Ana səhifə

The Principle of Least Action as the Logical Empiricist’s Shibboleth


Yüklə 291.5 Kb.
səhifə4/4
tarix26.06.2016
ölçüsü291.5 Kb.
1   2   3   4

*
Let me add a short envoi how to place this paper within the emerging field of history of philosophy of science. The intense research conducted during the last two decades has taught us that Logical Empiricism was no homogeneous movement, and that in various members starkly different philosophical backgrounds came to bear. Yet undoubtedly there were important cohesive elements originating from the sciences, such as modern logic and relativity theory. Rather than insisting exclusively on a particular interpretation of these theories, the identification with scientific modernism as a “world conception” played its important historical role. This also involved positioning oneself within various traditions in the history of science and philosophy, among them the Principle of Least Action.
References

I normally quote according to German originals. But for readers’ convenience I have added (after a ‘/’) the page numbers of the indicated English translations which, however, I do not always follow. All other translations are mine.


Blackmore, J. (ed.) (1992) Ernst Mach – A Deeper Look. Documents and New Perspectives (Dordrecht: Kluwer).

Boltzmann, L. (1866) ‘Über die mechanische Bedeutung des zweiten Hauptsatzes der Wärmetheorie’, Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften 53/II, 195-220.

Boltzmann, L. (1905) Populäre Schriften (Leipzig: J.A. Barth); partially translated in: Theoretical Physics and Philosophical Problems, ed. by B. McGuinness (Dordrecht: D.Reidel, 1974).

Born, M. (1922) ‘Hilbert und die Physik’, Die Naturwissenschaften 10, 88-93.

Corry, L., Renn J. and Stachel, J. (1999) ‘Belated Discussion in the Hilbert-Einstein Priority Dispute’, Science 278, 1270-1273.

Corry, L. (1997) ‘David Hilbert and the Axiomatization of Physics (1894-1905)’, Archive for History of Exact Sciences 51, 83-198.

Corry, L. (1999a) ‘From Mie’s Electromagnetic Theory of Matter to Hilbert’s Unified Foundations of Physics’, Studies in History and Philosophy of Modern Physics 30B, 159-183.

Corry, L. (1999b) ‘David Hilbert between Mechanical and Electromagnetic Reductionism (1910-1915)’, Archive for History of Exact Sciences 53, 489-527.

Earman, J. (1995) Bangs, Crunches, Whimpers, and Shrieks. Singularities and Acausalities in Relativistic Spacetimes (New York & Oxford: Oxford University Press).

Einstein, A. (1912) ‘Zur Theorie des statischen Gravitationsfeldes’, Annalen der Physik 38, 443-458.

Einstein, A., Grossmann, M. (1913) Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation (Leipzig: Teubner).

Einstein, A. (1914) ‘Die formale Grundlage der allgemeinen Relativitätstheorie,’ Königlich Preußische Akademie der Wissenschaften (Berlin). Sitzungsberichte (1914), 1030–1085;

Einstein, A. (1916a) ‘Die Grundlage der allgemeinen Relativitätstheorie,’ Annalen der Physik 49, 769–822.

Einstein, A. (1916b) ‘Hamiltonsches Prinzip und allgemeine Relativitätstheorie,’ Königlich Preußische Akademie der Wissenschaften (Berlin). Sitzungsberichte, 1111–1116.

Einstein, A. (1996) ‘Anhang. Darstellung der Theorie ausgehend von einem Variationsprinzip’, in: The Collected Papers of Albert Einstein, (Princeton: Princeton University Press), vol. 6, pp. 340-346.

Frank, P. (1906a) Über die Kriterien für die Stabilität der Bewegung eines materiellen Punktes in der Ebene und ihren Zusammenhang mit dem Prinzip der kleinsten Wirkung, handwritten Ph.D.-dissertation, University of Vienna.

Frank, P. (1906b) ‘Über einen Satz von Routh und ein damit zusammenhängendes Problem der Variationsrechnung’, Mathematische Annalen 64, 239-247; Erratum in Mathematische Annalen 66, 416.

Frank, P. (1909) ‘Ein Kriterium für die Stabilität der Bewegung eines materiellen Punktes und dessen Zusammenhang mit dem Prinzip der kleinsten Wirkung’, Monatshefte für Mathematik und Physik 20, 171-185.

Frank, P. (1932) Das Kausalgesetz und seine Grenzen (Wien: Springer); English translation by M. Neurath and R.S. Cohen (Dordrecht: Kluwer), 1998.

Frank, P. (1935) Das Ende der mechanistischen Physik (Wien: Gerold), in Schulte/McGuinness (1992), pp. 166-199/110-129.

Frank, P. (1947) Einstein. His Life and Times (London: Jonathan Cape).

Frank, P. (1961) Modern Science and Its Philosophy (New York: Collier Books).

Frank, W. (1993) ‘Moderne Logik und Mathematik in und aus Wien – Eine persönliche Perspektive’, in: R. Haller, F. Stadler (eds.) Wien-Berlin-Prag. Der Aufstieg der wissenschaftlichen Philosophie (Wien: Hölder-Pichler-Tempsky), pp. 619-633.

Frank, W. (1996) ‘Comments to Hans Hahn’s contributions to the calculus of variations’, in: Hans Hahn: Collected Works, vol. 2, ed. by L. Schmetterer and K. Sigmund (Wien-New York: Springer), pp. 1-16.

Goldstine, H.H. (1980) A history of the Calculus of Variations from the 17th through the 19th century, (New York, Heidelberg, Berlin: Springer).

Gray, J.J. (2000) The Hilbert Challenge (Oxford: Oxford University Press).

Hahn, H., Zermelo, E. (1904) ‘Weiterentwicklung der Variationsrechnung in den letzten Jahren’, Enzyklopädie der mathematischen Wissenschaften (Leipzig: Teubner), vol. IIA, 8a, pp. 626-641.

Hahn, H. (1930) ‘Die Bedeutung der wissenschaftlichen Weltauffassung, insbesondere für Mathematik und Physik’, in: Empirismus, Logik, Mathematik, (Frankfurt a.M.: Suhrkamp 1988), pp. 38-47 (originally in Erkenntnis 1 (1930/1), pp. 96-105); English translation in Empiricism, Logic, and Mathematics, ed. by B. McGuinness (Dordrecht: Reidel 1980), pp. 20-30.

Hahn, H. (1933) Logik, Mathematik und Naturerkennen (Wien: Gerold), in Schulte/McGuinness (1992), pp. 57-89/ 24-45.

Hecht, H. (1994) ‘Action, Quantité d’action und Wirkung: Helmholtz’ Rezeption dynamischer Grundbegriffe’, in L. Krüger (ed.), Universalgenie Helmholtz. Rückblick nach 100 Jahren (Berlin: de Gruyter), pp. 107-123.

Heidelberger, M., Stadler, F. (eds.) (2002) History of Philosophy of Science. New Trends and Perspectives, (Dordrecht: Kluwer).

Helmholtz, H.v. (1886) ‘Ueber die physikalische Bedeutung des Princips der kleinsten Wirkung’, in: Wissenschaftliche Abhandlungen, Leipzig. 1895, vol.III, pp. 203-248.

Hilbert, D. (1900) “Mathematische Probleme”, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse aus dem Jahre 1900, pp. 253-297. English translation in the Bulletin of the American Mathematical Society 8 (1902), pp. 437-479 (reprinted in the new series of the Bulletin 37 (2000), pp. 407-436).

Hilbert, D. (1916) ‘Die Grundlagen der Physik (Erste Mitteilung)’, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse aus dem Jahre 1915, 395-407.

Hilbert, D. (1917) ‘Die Grundlagen der Physik (Zweite Mitteilung)’, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse aus dem Jahre 1916, 53-76.

Hilbert, D. (1918) ‘Axiomatisches Denken’, Mathematische Annalen 78, 405-415. An English translation appeared in W. Ewald (ed.), From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. II. Oxford: Clarendon Press, 1996, pp. 1105-1115.

Hilbert, D. (1924) ‘Die Grundlagen der Physik’, second version of (1916) and (1917) reprinted in Hilbertiana – Fünf Aufsätze von David Hilbert (Darmstadt: Wissenschaftliche Buchgesellschaft), 1964, pp. 47-78.

Hilbert, D. (1930) ‘Naturerkennen und Logik’, Die Naturwissenschaften 18, 959-963; English translation in Ewald, op.cit., pp. 1157-1165.

Hofer, V. (2002) ‘Philosophy of Biology around the Vienna Circle: Ludwig von Bertalanffy, Joseph Henry Woodger and Philipp Frank’, in: (Heidelberger, Stadler, 2002), pp. 325-334.

Jacobi, C.G.J. (1866) Vorlesungen über Dynamik, ed. by A. Clebsch (Berlin: Georg Reimer).

Lanczos, C. (1986) The Variational Principles of Mechanics (New York: Dover Publications).

Lemons, D.S. (1997) Perfect Form. Variational Principle, Methods, and Applications in Elementary Physics (Princeton: Princeton University Press).

Leibniz, G.W. (1696) ‘Tentamen anagogicum: An Anagogical Essay in the Investigation of Causes’, in Philosophical Papers and Letters. A selection translated and edited with an introduction by L. E. Loemker (Dordrecht: D. Reidel), 1969, pp. 477-485.

Leibniz, G. W. (1697) ‘On the Radical Origination of Things’, op.cit., pp. 486-491.

Mach, E. (1919) Die Principien der Wärmelehre. Historisch-kritisch entwickelt, J.A. Barth, Leipzig; English translation: Principles of the Theory of Heat. Historically and Critically Elucidated. Dordrecht: Reidel), 1986.

Mach, E. (1988) Die Mechanik in ihrer Entwicklung. Historisch-kritisch dargestellt, ed. by Renate Wahsner and Horst-Heino von Borzeszkowski (Berlin: Akademie-Verlag). Authorized English translation: The Science of Mechanics. Account of Its Development (La Salle, IL: Open Court), 1989.

Majer, U. (2001) ‘Hilbert’s Axiomatic Method and the Foundations of Science: Historical Roots of Mathematical Physics in Göttingen (1900-1930)’, in M. Rédei, M. Stöltzner (eds.), John von Neumann and the Foundations of Physics (Dordrecht: Kluwer), pp. 11-34.

Majer, U. (2002) ‘Hilbert’s Program to Axiomatize Physics (in Analogy to Geometry) and its Impact on Schlick, Carnap and other Members of the Vienna Circle’, in (Heidelberger, Stadler, 2002), pp. 213-224.

Ostwald, W. (1893) ‘Ueber das Princip des ausgezeichneten Falles’, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig (Mathematisch-Physische Klasse) 45, 599-603.

Pauli, W. (1921) ‘Relativitätstheorie,’ in: Encyklopädie der mathematischen Wissenschaften, mit Einschluß ihrer Anwendungen, vol. 5, Physik, part 2 (Leipzig: Teubner), pp. 539–775.

Pauli, W. (1979) Wolfgang Pauli. Wissenschaftlicher Briefwechsel, vol. 1, ed. by A. Hermann, K. v. Meyenn, V. Weisskopf (New York: Springer-Verlag).

Petzoldt, J. (1890) ‘Maxima, Minima und Oekonomie’, Vierteljahrsschrift für wissenschaftliche Philosophie 14, 206-239, 354-366, 417-442.

Petzoldt, J. (1895) ‘Das Gesetz der Eindeutigkeit’, Vierteljahrsschrift für wissenschaftliche Philosophie 19, 148-203.

Planck, M. (1908) ‘Die Einheit des physikalischen Weltbildes’, in (Planck, 1944), pp. 1-24; partially translated in (Blackmore, 1992).

Planck, M. (1910a) ‘Zur Machschen Theorie der physikalischen Erkenntnis. Eine Erwiderung’, in (Mach, 1988), pp. 670-678; partially translated in (Blackmore, 1992).

Planck, M. (1910b) ‘Die Stellung der neueren Physik zur mechanischen Naturanschauung’, in (Planck, 1944), pp. 25-41.

Planck, M. (1910c) ‘Zur Theorie der Wärmestrahlung’, Physikalische Abhandlungen und Vorträge (Braunschweig: Vieweg), 1958, vol.II, pp. 237-247.

Planck, M. (1915) ‘Das Prinzip der kleinsten Wirkung’, in (Planck, 1944), pp. 68-78.

Planck, M. (1923) ‘Kausalgesetz und Willensfreiheit’, in (Planck, 1944), pp. 112-141.

Planck, M. (1937) ‘Vom Relativen zum Absoluten’, in (Planck, 1944), pp. 142-155.

Planck, M. (1936) ‘Vom Wesen der Willensfreiheit’, in (Planck, 1944), pp. 274-290.

Planck, M. (1937) ‘Religion und Naturwissenschaft’, in (Planck, 1944), pp. 291-306.

Planck, M. (1944) Wege zur physikalischen Erkenntnis. Reden und Vorträge (Leipzig: S. Hirzel), fourth edition.

Pulte, H. (1989) Das Prinzip der kleinsten Wirkung und die Kraftkonzeptionen der rationalen Mechanik : eine Untersuchung zur Grundlegungsproblematik bei Leonhard Euler, Pierre Louis Moreau de Maupertuis und Joseph Louis Lagrange (Stuttgart: Steiner) (Studia Leibnitiana: special volume 19).

Rowe, D.E. (2001) ‘Einstein Meets Hilbert: At the Crossroads of Physics and Mathematics’, Physics in Perspective 3, 379-424.

Sauer, T. (1999) ‘The Relativity of Discovery: Hilbert’s First Note on the Foundations of Physics’, Archive for the History of Exact Sciences 53, 529-575.

Schirrmacher, A. (2001) ‘The proofs of Kirchhoff’s radiation law before and after Planck’, Working paper, Münchner Zentrum für Wissenschafts- und Technikgeschichte (http://www.mzwtg.mwn.de/Arbeitspapiere/Schirrmacher_2001_1.pdf).

Schlick, M. (1920) ‘Naturphilosophische Betrachtungen über das Kausalprinzip’, Die Naturwissenschaften 8, 461-474, English translation in (Schlick, 1979), vol. I, pp. 295-321.

Schlick, M. (1925) Naturphilosophie, in Max Dessoir (ed.): Lehrbuch der Philosophie: Die Philosophie in ihren Einzelgebieten (Berlin: Ullstein), pp. 397-492, English translation in (Schlick, 1979), vol. II, pp. 1-90.

Schlick, M. (1931) ‘Die Kausalität in der gegenwärtigen Physik’, Die Naturwissenschaften 19, 145-162; English translation in (Schlick, 1979), vol. II, pp. 176-209.

Schlick, M. (1932) ‘Positivism and Realism’, Erkenntnis 3, 1-31; English translation in (Schlick, 1979), vol.II, pp. 259-284.

Schlick, M. (1974) General Theory of Knowledge (Wien-New York: Spinger); English translation of the second edition of 1925.

Schlick, M. (1979) Philosophical Papers, edited by Henk L. Mulder and Barbara F.B. van de Velde-Schlick, Dordrecht: Reidel, 2 vols.

Schramm, M. (1985) Natur ohne Sinn ? – Das Ende des teleologischen Weltbildes (Graz-Wien-Köln: Styria).

Schulte, J., McGuinness, B. (eds.) (1992) Einheitswissenschaft (Frankfurt am Main: Suhrkamp); English translation ed. by B. McGuinness: Unified Science. The Vienna Circle Monograph Series (Dordrecht: Reidel), 1987.

Stöltzner, M. (1999) ‘Vienna Indeterminism: Mach, Boltzmann, Exner’, Synthese 119, 85-111.

Stöltzner, M. (2000) ‘Le principe de moindre action et les trois ordres de la téléologie formelle dans la Physique’, Archives de Philosophie 63 (2000), pp. 621-655.

Stöltzner, M. (2002) ‘How Metaphysical is “Deepening the Foundations”? – Hahn and Frank on Hilbert’s Axiomatic Method’, in (Heidelberger, Stadler, 2002), pp. 245-262.

Thiele, R. (1997) ‘Über die Variationsrechnung in Hilberts Werken zur Analysis’, N.T.M. 5, 23-42.

Uebel, T. (2000) Vernunftkritik und Wissenschaft: Otto Neurath und der erste Wiener Kreis (Wien-New York: Springer).

Uebel, T. (2002) ‘On the ‘Austrian’ Roots of Logical Empiricism: The Case of the ‘First’ Vienna Circle’, in P. Parrini, W. Salmon, M. Salmon (eds.): Logical Empiricism. Historical and Contemporary Perspectives (Pittsburgh: University of Pittsburgh Press), forthcoming.

Yourgrau, W. and Mandelstam, S. (1968) Variational Principles in Dynamics and Quantum Theory (London: Pitman).



* This work was supported by the SFB F012 “Theorien- und Paradigmenpluralismus in den Wissenschaften” of the Austrian Science Fund. Thanks go to Paul Weingartner and Gerhard Schurz for their constant encouragement. I am particularly indebted to Veronika Hofer, Ulrich Majer, David Rowe, Tilman Sauer, and Matthias Schramm for their suggestions and critical comments to earlier drafts of this paper. And, of course, I acknowledge the anonymous referees for their constructive criticism.

1 There is a fairly decent historical literature on the PLA and variational calculus up to 1900; among them (Goldstine, 1980), (Pulte, 1989), and (Schramm, 1985). On Helmholtz’s very influential work, see (Hecht, 1994). An overview of the physical applications if given in the classic of Lanczos (1986), and more recently (Lemons, 1997). The book of Yourgrau and Mandelstam (1968) combines a detailed study of the physical applications of the PLA with an analysis of its significance in natural philosophy (Ch. 14). Their negative conclusion rests upon the presupposition that the PLA and the differential equations are completely equivalent. As almost all the physical and philosophical literature they thus neglect the mathematical subtleties of variational calculus which played a substantial role in Planck’s and, in particular, in Hilbert’s appreciation of the PLA. As I shall show also Hahn, Frank, and, arguably, Schlick were well aware these results. Unfortunately reasons of space make it impossible to enter into further mathematical detail here. But the coherence of the philosophical argument presented here only requires to prove historically that Hahn and Frank were well-versed in variational calculus.

2 When it comes to philosophy, the German “Zweckmäßigkeit” is notoriously difficult to translate. “Teleology”, “finality”, and “purposiveness” capture only part of it and since Kant’s Critique of Judgment “Zweckmäßigkeit” also denotes the systemic structure found in organisms. For reasons of historical continuity with the philosophical tradition around the PLA, I will stick to the term “teleology” even though one of the protagonists of this paper, Moritz Schlick (1925), explicitly distinguishes biological “Zweckmäßigkeit” and metaphysical “Teleologie”.

3 See (Schramm, 1985, Ch. 2).

4 The only exception is, interestingly, Boltzmann (1866) himself who attempted to relate Clausius’ Second Law of Thermodynamics to the PLA. But he succeeded only for strictly periodic systems – not quite a generic case in thermodynamics. Although he would subsequently assign ever increasing importance to statistical concepts in understanding the Second Law, as late as in 1899 he returned to his old idea when closing his lectures at Clark University: “It turns out that the analogies with the Second Law are neither simply identical to the Principle of Least Action, nor to Hamilton’s Principle, but that they are closely related to each of them.” (1905, p. 306)

5 One might wonder why Hans Reichenbach’s name is missing here. Admittedly, his views on relativity theory are today more influential in philosophy than Schlick’s. But – or so I conjecture – his own axiomatization of relativity theory was guided by the mentioned philosophical views about the relationship between mathematics and physics which made the PLA a Shibboleth. In particular, Reichenbach’s axioms intend a simple coordination of the mathematical concepts to basic experiences rather than a simple unifying principle. Accordingly, there was not much use for the PLA within Reichenbach’s formal approach from the very beginning.

6 In Section 6 below I shall deal in more detail with this example involving sufficient conditions for the PLA to yield a minimum.

7 The authorized English translation by McCormack unfortunately uses the word ‘principle’ in all cases.

8 Leibniz’s essay remained unpublished until 1890, the same year when Petzoldt wrote his first paper; cf. (Stöltzner, 2000).

9 I am indebted to Veronika Hofer for elucidating to me the biological aspects of Mach’s thoughts. This has conducted me to translate Anpassung in a biological manner rather than by the physicist’s curve ‘fitting’ chosen by Blackmore. Notice that while Mach intends a unified theory of biology and physics, Planck limits himself to physics.

10 ‘Note added in proof’ to (Einstein, 1912). I owe thanks to Tilman Sauer for this hint.

11 See the footnote to the letter of 8 March 1921 in (Pauli, 1979, p. 27).

12 On the import and history of these early ‘folk theorems’, see (Rowe, 2001). There are important unmarked differences between both printed versions of Hilbert’s paper, a fact which Rowe judges “a blatant abuse of power” (p. 418) on Hilbert’s part in his capacity of chief editor of the Mathematische Annalen. Thus, I always give the page numbers of both versions in cases where they coincide..

13 This should not be confused with Noether’s first theorem that relates one-parameter group symmetries and conserved quantities, which today plays the more prominent role in mathematical physics.

14 For more details on this point, see (Corry, 1999a) and (Sauer, 1999) who provides a detailed analysis of the theorem.

15 John Earman stresses that Hilbert’s definition of regularity is “defective in failing to capture the distinction between genuine singularities…and mere coordinate singularities” (1995, p. 6), such as the horizon of a Schwarzschild black hole. Earman’s book also provides most competent information about causality-violating spacetimes.

16 Variational problems enjoying this property are also called ‘regular’, but in a sense different from being just non-singular. See (Gray, 2000, pp. 117-133) for a history of Hilbert’s three problems on variational calculus.

17 For the wider context and the subsequent changes of Born’s perspective, see (Schirrmacher, 2001).

18 This is, to my mind, the main reason why Hilbert lists Mach in the sixth problem because apart from Mach’s historical-critical inquiries that sketch alternative histories, there is hardly anything attractive to Hilbert on the methodological level.

19 See (Stöltzner, 2002) where the concept of elimination appearing in (Hilbert, 1930) is interpreted as a descendant of ‘deepening the foundations’.

20 In view of Boltzmann’s (1905, p. 269/ 113) negative judgment, it is quite surprising that Hilbert remains silent about the great difficulties to find those supplementary axioms which make Hertz’s theory at all applicable.

21 Schlick has also a low opinion of Mach’s role in bringing about relativity theory; cf. (1920, p. 471/313). And in the Erkenntnislehre, he largely took Planck’s side in the polemics with Mach, cf. (1974, p. 99).

22 Typically, such a homogeneity can be expressed by the invariance of the law under an appropriate class of coordinate transformations.

23 In a Curriculum Vitae written for his habilitation (Personalakt at the Archive of the Univer­sity of Vienna), Hahn lists the lectures of Hilbert and Minkowski and seminars of Hilbert, Klein, and Minkowski.

24 See his Nationale (a list of the courses a student enrolled and paid for) at the Archive of the University of Vienna.

25 See his Curriculum Vitae in the Habilitationsakt at the Archive of the University of Vienna.

26 For Hilbert, the catalogue lists a “Seminar on the theory of functions” (together with Klein and Minkowski) a lecture on “Continuum Mechanics”, and an introductory class “Differential and Integral Calculus I” (together with Carathéodory) which was certainly not on the agenda of a visiting scientist. I thank Ulrich Majer for this information.

27 Most instructive here is Frank’s criticism of Ludwig von Bertalanffy’s “attempts to formulate vitalism ‘positivistically’” – so the title of the respective section IV.19. For details, see (Hofer 2002).

1   2   3   4


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©atelim.com 2016
rəhbərliyinə müraciət