Ana səhifə

Colletotrichum gloeosporioides is a plant pathogen that causes wilting


Yüklə 32.5 Kb.
tarix24.06.2016
ölçüsü32.5 Kb.
Abstract

The fungus Colletotrichum gloeosporioides is a plant pathogen that causes wilting

and mortality of annual and perennial Limonium plants from the Plumbaginaceae

family. In the Arava desert, Limonium is an important export flower crop, produced

by tissue culture. The growers suffer extensive economic damage that also includes

the need to replace expensive seedlings.



Limonium cultivars that are susceptible to the fungus may be latently infected during

the winter, and mortality occurs when the temperatures increase in the summer and

autumn (June-October), a phenomenon that began in 1995. Plants may be infected at

the nursery stage, and in addition, the pathogen can be transferred from infected to

healthy material in the field – during pruning and picking, or via the irrigation system,

that spreads the fungal conidia. Under suitable humidity conditions, the pathogen may

affect all plant parts including crown, foliage, stems and the flower pedicles.

The disease is usually diagnosed according to classical methods based on

morphological criteria such as conidia size and shape, and colony growth rate, which

are not considered accurate parameters for detection. Therefore, molecular techniques,

using specific PCR amplification, which are more accurate for identification, have

is even more )been recently adopted. The quantitative real-time PCR (QRT-PCR

sensitive than regular PCR and is based on identification via reaction and

measurement of it's kinetics. This method enables identification of the pathogen in planta,

and can also measure quantitative and qualitative levels of infection.

In this study we used two isolates of the fungus Colletotrichum gloeosporioides,

isolates no. 28 and 48A, which originated from diseased Limonium plants. They were

chosen due to their high percentage of conidial germination and high disease severity

in inoculated plants, relative to other isolates that were examined. In preliminary

experiments two plant inoculation methods were examined, spray and dipping in

conidial suspensions. The dipping method was chosen due to a more rapid disease

response and higher disease severity.

Two local Limonium cultivars, 'Supreme' and 'Safora', were evaluated for their

response to the pathogen by: a. visual estimation of symptom severity on leaves and

seedling mortality; b. isolation from different plant parts on a semi-selective media. In

addition, DNA was isolated from infected plants and examined for presence of the

pathogen by QRT-PCR with specific primers for the internal transcribed spacer region

(ITS) and β-tubulin (TUB I) fungal genes.

Plants from both cultivars were incubated in the greenhouse by dipping them in

different concentrations of conidial suspensions (103, 104, 105, 106, 107 conidia per

ml). Percentage of pathogen colonization was higher in above-ground parts compared

to that in the below-ground parts, indicating that the source of the fungus is from

foliar inoculation. Disease severity increased with higher concentrations of conidial

suspensions. In addition, the 'Safora' cultivar was more tolerant to the pathogen

compared to 'Supreme'. Symptoms that appeared on leaves of inoculated plants in the

greenhouse disappeared in time in plants following field transplantation and isolation

of the pathogen from the inoculated plants became more difficult. Mortality of

inoculated 'Supreme' plants reached 80% a few months after inoculation, whereas

'Safora' plants remained healthy. 'Supreme' plants from the non-inoculated controls

also died, indicating that infection spread via roots and/or the irrigation system, after

they were transplanted to the field.

Regular PCR reaction enabled identification of fungal DNA in the presence and

absence of plant DNA at a threshold concentration of 30 pg/reaction. However, there

was difficulty in identification of the fungal DNA in inoculated plants.

Calibrations of QRT-PCR reactions were performed successfully with primers for the

C. gloeosporioides fungal ITS and TUB I genes, and for the Limonium 18S gene. In

order to identify the fungus in infected plants by QRT-PCR, primers that identified

the TUB I gene were chosen, since their reaction values were closer to the ideal

reaction values when fungal DNA was examined in the presence of plant DNA. This

was done even though the identification of the TUB I gene was performed in a later

cycle in comparison with the identification of the ITS gene, for the same fungal DNA

sample.

QRT-PCR reactions enabled qualitative but not quantitative identification of the



pathogen in plant DNA from greenhouse and field inoculated plants, during early

infection stages – as early as one day post-inoculation with higher inoculum densities.

However, as time elapsed, more plant samples inoculated with lower inoculum

densities were identified as colonized by the pathogen. The identification of the



fungus in-planta by QRT-PCR may be developed as an important diagnostic tool for

disease in the nursery in future.


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©atelim.com 2016
rəhbərliyinə müraciət