Ana səhifə

Electronic Supplementary Material 1 Do animals generally flush early and avoid the rush? A meta-analysis


Yüklə 0.57 Mb.
səhifə2/2
tarix24.06.2016
ölçüsü0.57 Mb.
1   2

*Effect size estimated from results of experiment 1 (no autotomized individuals).

Figure S1. Phylogenies of taxa included in phylogenetic meta-analysis. A, birds; B, mammals; and C, lizards.



Table S2. The combined effects of starting distance or alert distance on flight initiation distance under ordinary meta-analysis. Mean effect size (r), confidence interval of 95% (CI), number of species tested (spp.), total of individuals tested (total N), degree of heterogeneity in effect size within the group (), the number of studies reporting no effect to nullify the observed effect, and rank correlation test to assess possible bias in publication (rank correlation).



group

r

CI

spp.

total N

(%)

fail-safe number

rank correlation (P)

global effect

0.60

0.55 - 0.64

97

5721

87.0

58,152

0.810

birds

0.62

0.56 - 0.67

79

4456

85.8

39,941

0.888

mammals

0.69

0.48 - 0.83

7

676

94.3

746

0.764

lizards approached slowly

0.15

0.01 - 0.28

6

230

0.0

1

0.452

lizards approached rapidly

0.58

0.43 - 0.69

3

208

34.3

53

0.296

Table S3. Pair-wise comparison (z and (P-value)) between mean effect sizes of groups estimated under ordinary meta-analysis. Bold cells indicate statistical significance (i.e. P < 0.008).






birds

mammals

lizards approached slowly

mammals

0.42 (0.676)







lizards approached slowly

5.84 (< 0.001)

2.99 (0.003)




lizards approached rapidly

0.39 (0.698)

0.58 (0.559)

3.55 (< 0.001)

Table S4. Results of the rank correlations to test for publication bias.

group

Kendall’s tau

P*

birds

-0.011

0.888

mammals

0.095

0.764

lizards approached slowly

-0.276

0.452

lizards approached rapidly

-0.667

0.296

*two-tailed.

Figure S2. Dendrograms of each group to explore possible patterns explaining the observed heterogeneity. A, birds; B, mammals; C, lizards approached slowly; D, lizards approached rapidly. Species with same colors means that it belongs to the same family.





Figure S3. Funnel plot of each group to assess publication bias. Effect sizes are reported as Fisher’s z, and sample sizes are reported as standard errors to improve the display of data. Note that standard error axis is inverted, which means that sample size increases as we move from bottom to top of axis. If there were an obvious bias, it would be seen by relatively more points in the right side than the left side in the bottom half of the funnel plots (i.e. more species with large than small effect size in studies with low sample sizes).



Table S5. Results of phylogenetic meta-analysis about effects of starting distance or alert distance on flight initiation distance after exclude potentially artifactual effect sizes. Mean effect size (r), confidence interval of 95% (CI), number of species tested (spp.), total of individuals tested (total N), degree of heterogeneity in effect size within the group (), the number of studies reporting no effect to nullify the observed effect, and rank correlation test to assess possible publication bias (rank correlation).



group

r

CI

spp.

total N

(%)

fail-safe number

rank correlation (P)

birds

0.67

0.57 - 0.75

73

4176

96.6

37,145

0.434

mammals

0.70

0.48 - 0.84

7

676

98.4

746

0.764

lizards approached slowly

0.20

0.07 - 0.33

6

230

0.0

1

0.452

lizards approached rapidly

0.60

0.46 - 0.71

2

189

39.76

42

1.000*


*logically, P-value is 1 because remained only two points to estimate the rank correlation.

Table S6. Pair-wise comparison (z and (P-value)) between mean effect sizes of groups analyzed by phylogenetic meta-analysis after exclude potentially artifactual effect sizes. Bold cells indicate statistical significance (i.e. P < 0.008).






birds

mammals

lizards approached slowly

mammals

0.28 (0.780)







lizards approached slowly

5.59 (< 0.001)

3.45 (0.001)




lizards approached rapidly

0.86 (0.388)

0.82 (0.413)

3.90 (< 0.001)


SUPLEMENTARY REFERENCES

1 Cohen, J. 1992 A power primer. Psychol. Bull. 112, 155–159.

2 Lajeunesse, M. J. 2009 Meta-analysis and the comparative phylogenetic method. The Am. Nat. 174, 369–381. (doi:10.1086/603628)

3 Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. 2009 Introduction to Meta-Analysis. Chichester, UK: John Wiley & Sons, Ltd. (doi:10.1002/9780470743386)

4 Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. 2012 The global diversity of birds in space and time. Nature 491, 444–448. (doi:10.1038/nature11631)

5 Bininda-Emonds, O. R. P. et al. 2007 The delayed rise of present-day mammals. Nature 446, 507–12. (doi:10.1038/nature05634)

6 Blankers, T., Townsend, T. M., Pepe, K., Reeder, T. W. & Wiens, J. J. 2012 Contrasting global-scale evolutionary radiations: phylogeny, diversification, and morphological evolution in the major clades of iguanian lizards. Biol. J. Linn. Soc. 108, 127–143.

7 Blomberg, S. P., Garland, T. & Ives, A. R. 2003 Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745.

8 Felsenstein, J. 1985 Phylogenies and the comparative method. Am. Nat. 125, 1–15.

9 Harvey, P. H. & Pagel, M. D. 1991 The comparative method in evolutionary biology. Oxford, UK: Oxford University Press.

10 Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P. & Webb, C. O. 2010 Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464.

11 Begg, C. B. & Mazumdar, M. 1994 Operating characteristics of a rank correlation test for publication bias. Biometrics 50, 1088–1101.

12 Dumont, F., Pasquaretta, C., Réale, D., Bogliani, G. & Hardenberg, A. 2012 Flight initiation distance and starting distance: biological effect or mathematical artefact? Ethology 118, 1–12. (doi:10.1111/eth.12006)

13 Chamaillé-Jammes, S. & Blumstein, D. T. 2012 A case for quantile regression in behavioral ecology: getting more out of flight initiation distance data. Behav. Ecol. Sociobiol. 66, 985–992. (doi:10.1007/s00265-012-1354-z)

14 R Development Core Team, R. 2011 R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. (doi:10.1007/978-3-540-74686-7)

15 Blumstein, D. T. 2003 Flight initiation distance in birds is dependent on intruder starting distance. J. Wildl.Manage. 67, 852–857.

16 Cooper, W. E. J. 2005 When and how do predator starting distances affect flight initiation distances? Can. J. Zool. 83, 1045–1050. (doi:10.1139/Z05-104)

17 Cooper, W. E. J. 2008 Strong artifactual effect of starting distance on flight initiation distance in the actively foraging lizard Aspidoscelis exsanguis. Herpetologica 64, 200–206.

18 Nakagawa, S. & Cuthill, I. C. 2007 Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 82, 591–605. (doi:10.1111/j.1469-185X.2007.00027.x)

19 Ikuta, L. A. & Blumstein, D. T. 2003 Do fences protect birds from human disturbance? Biol. Conserv. 112, 447–452. (doi:10.1016/S0006-3207(02)00324-5)

20 Cárdenas, Y. L., Shen, B., Zung, L. & Blumstein, D. T. 2005 Evaluating temporal and spatial margins of safety in galahs. Anim. Behav. 70, 1395–1399. (doi:10.1016/j.anbehav.2005.03.022)

21 Valcarcel, A. & Fernández-Juricic, E. 2009 Antipredator strategies of house finches: are urban habitats safe spots from predators even when humans are around? Behav. Ecol. Sociobiol. 63, 673–685. (doi:10.1007/s00265-008-0701-6)

22 Gulbransen, D., Segrist, T., Del Castillo, P. & Blumstein, D. T. 2006 The fixed slope rule: an inter-specific study. Ethology 112, 1056–1061. (doi:10.1111/j.1439-0310.2006.01265.x)

23 Boyer, J. S., Hass, L. L., Lurie, M. H. & Blumstein, D. T. 2006 Effect of visibility on time allocation and escape decisions in crimson rosellas. Aust. J. Zool. 54, 363–367. (doi:10.1071/ZO05080)

24 Geist, C., Liao, J., Libby, S. & Blumstein, D. T. 2005 Does intruder group size and orientation affect flight initiation distance in birds? Anim. Biodiv.Conserv. 28, 69–73.

25 Magige, F. J., Holmern, T., Stokke, S., Mlingwa, C. & Røskaft, E. 2009 Does illegal hunting affect density and behaviour of African grassland birds? A case study on ostrich (Struthio camelus). Biodiv. Conserv. 18, 1361–1373. (doi:10.1007/s10531-008-9481-6)

26 Rodriguez-Prieto, I., Fernández-Juricic, E., Martín, J. & Regis, Y. 2009 Antipredator behavior in blackbirds: habituation complements risk allocation. Behav. Ecol. 20, 371–377. (doi:10.1093/beheco/arn151)

27 Eason, P. K., Sherman, P. T., Rankin, O. & Coleman, B. 2006 Factors affecting flight initiation distance in American robins. J. Wildl. Manage. 70, 1796–1800.

28 Setsaas, T. H., Holmern, T., Mwakalebe, G., Stokke, S. & Røskaft, E. 2007 How does human exploitation affect impala populations in protected and partially protected areas? – A case study from the Serengeti Ecosystem, Tanzania. Biol. Conserv. 136, 563–570. (doi:10.1016/j.biocon.2007.01.001)

29 Blumstein, D. T. et al. 2004 Locomotor ability and wariness in yellow-bellied marmots. Ethology 110, 615–634.

30 Runyan, A. M. & Blumstein, D. T. 2004 Do individual differences influence flight initiation distance? J. Wildl.Manage. 68, 1124–1129.

31 Lagos, P. A., Meier, A., Tolhuysen, L. O., Castro, R. A., Bozinovic, F. & Ebensperger, L. A. 2009 Flight initiation distance is differentially sensitive to the costs of staying and leaving food patches in a small-mammal prey. Can. J. Zool. 87, 1016–1023. (doi:10.1139/Z09-089)

32 Stankowich, T. & Coss, R. G. 2006 Effects of predator behavior and proximity on risk assessment by Columbian black-tailed deer. Behav. Ecol. 17, 246–254. (doi:10.1093/beheco/arj020)

33 Reimers, E., Miller, F. L., Eftestøl, S., Colman, J. E. & Dahle, B. 2006 Flight by feral reindeer Rangifer tarandus tarandus in response to a directly approaching human on foot or on skis. Wildl. Biol. 12, 403–413.

34 Reimers, E., Røed, K. H., Flaget, Ø. & Lurås, E. 2010 Habituation responses in wild reindeer exposed to recreational activities. Rangifer 30, 45–60.

35 Engelhardt, S. C. & Weladji, R. B. 2011 Effects of levels of human exposure on flight initiation distance and distance to refuge in foraging eastern gray squirrels (Sciurus carolinensis ). Can. J. Zool. 89, 823–830. (doi:10.1139/Z11-054)

36 Cooper, W. E. J. 2010 Pursuit deterrence varies with predation risks affecting escape behaviour in the lizard Callisaurus draconoides. Anim. Behav. 80, 249–256. (doi:10.1016/j.anbehav.2010.04.025)

37 Cooper, W. E. J. 2007 Escape and its relationship to pursuit-deterrent signalling in the Cuban curly-tailed lizard Leiocephalus carinatus. Herpetologica 63, 144–150.

38 Cooper, W. E. J., Hawlena, D. & Pérez-Mellado, V. 2009 Interactive effect of starting distance and approach speed on escape behavior challenges theory. Behav. Ecol. 20, 542–546. (doi:10.1093/beheco/arp029)

39 Cooper, W. E. J., Attum, O. & Kingsbury, B. 2008 Escape behaviors and flight initiation distance in the common water snake Nerodia sipedon. J. Herpetol. 42, 493–500.



40 Stankowich, T. 2009 When predators become prey: flight decisions in jumping spiders. Behav. Ecol. 20, 318–327. (doi:10.1093/beheco/arp004)



1   2


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©atelim.com 2016
rəhbərliyinə müraciət