Ana səhifə

Tesis de grado


Yüklə 7.89 Mb.
səhifə8/9
tarix24.06.2016
ölçüsü7.89 Mb.
1   2   3   4   5   6   7   8   9



  1. Variables abióticas:

Profundidad= 10 metros.

Sitio

Fecha

Tav30

Tmin30

Tmax30

Rad30

Tav60

Tmin60

Tmax60

Rad60

Tav90

Tmin90

Tmax90

Rad90

P.V.R.

octubre

21.89

19.71

22.76

0.14

19.91

18.24

22.42

0.08

19.78

18.72

21.38

0.06

Pl.N.

octubre

20.64

19.65

21.53

0.15

19.27

17.65

20.93

0.06

19.27

18.38

20.50

0.06

P.Es.

octubre

20.22

19.42

21.14

0.13

18.93

17.52

20.45

0.07

18.90

18.12

20.11

0.05

L.Ca.

octubre

19.92

19.00

20.55

0.11

18.66

17.39

20.28

0.07

18.64

17.95

19.86

0.06

P.Pr.

octubre

19.54

18.94

19.96

0.07

18.32

16.94

19.91

0.07

18.31

17.61

19.59

0.06

P.Mo.

octubre

18.12

17.65

18.68

0.07

17.18

16.20

18.26

0.05

17.15

16.57

18.09

0.04

P.V.R.

abril

20.09

18.05

23.11

0.23

20.36

19.55

21.62

0.09

20.62

20.37

20.99

0.06

L.Ca.

abril

20.62

18.82

23.37

0.23

20.35

19.86

21.34

0.07

20.51

20.06

21.26

0.07

P.Pr.

abril

20.27

18.36

22.98

0.23

20.12

19.72

20.92

0.06

20.30

19.87

21.01

0.07

Profundidad=20 metros.

Sitio

Fecha

Tav30

Tmin30

Tmax30

Rad30

Tav60

Tmin60

Tmax60

Rad60

Tav90

Tmin90

Tmax90

Rad90

Pl.N.

octubre

18.90

18.06

19.82

0.13

17.95

16.50

19.05

0.05

17.95

17.12

18.81

0.04

P.Es.

octubre

18.66

17.70

19.65

0.13

17.83

16.73

18.90

0.06

17.81

17.15

18.56

0.03

L.Ca.

octubre

18.35

17.85

18.94

0.08

17.50

16.54

18.57

0.04

17.50

16.93

18.34

0.04

P.Pr.

octubre

17.98

17.56

18.43

0.07

17.15

16.14

18.21

0.04

17.16

16.58

18.02

0.04

P.Mo.

octubre

16.83

16.49

17.22

0.08

16.27

15.65

16.91

0.04

16.26

15.90

16.77

0.02

P.V.R.

abril

19.24

16.78

22.68

0.25

18.91

18.41

20.62

0.18

19.20

18.61

19.90

0.07

L.Ca.

abril

18.99

16.51

22.58

0.25

18.24

17.36

20.42

0.12

18.54

17.84

19.49

0.10

P.Pr.

abril

19.08

16.46

22.71

0.26

18.31

17.43

20.55

0.13

18.61

17.93

19.56

0.10

P.Mo.

abril

18.88

16.25

22.77

0.28

18.13

17.28

20.43

0.13

18.31

17.64

19.47

0.09

  1. Abundancia relativa de especies:

























BIBLIOGRAFÍA

1. Chavez, F. and R.C. Brusca, The Galapagos Islands and their relation to oceanographic processes in the Tropical Pacific, in Galápagos Marine Invertebrates, M.J. James, Editor. 1991, Plenum Press: New York.

2. Edgar, G., et al., Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galapagos archipelago. Journal of Biogeography, 2004: p. 1–18.

3. Harris, M.P., Breeding seasons of seabirds in the Galápagos islands. Journal of Zoology of London, 1969. 159: p. 145-165.

4. Podestá, G.P. and P.W. Glynn, The 1997-98 El Niño Event in Panamá and Galápagos: an update of thermal stress indices relatives to coral bleaching. Bulletin of Marine Science, 2001. 69(1): p. 43-59.

5. Barber, R. and F. Chavez, Biological consequences of El Niño. Science, 1983. 222(4629): p. 1203-1210.

6. Boersma, P.D., Population Trends of the Galapagos Penguin: Impacts of El Nino and La Nina. The Condor, 1998. 100(2): p. 245-253.

7. FCD, Submarine Ecological Database. 2009, Fundación Charles Darwin.

8. Feldman, G., Satellites, seabirds and seals., in El Niño in the Galápagos Islands: the 1982-1983 event, G. Robinson and E.d. Pino, Editors. 1985, Charles Darwin Foundation: Quito - Ecuador.

9. Palacios, D.M., Factors influencing the island-mass effect of the Galápagos Archipelago. Geophysical Reseach Letters, 2002. 29(23): p. 49-53.

10. Geist, D.J., A.R. McBirney, and R.A. Duncan, Geology of Santa Fe Island: the oldest Galápagos Volcano. Journal of Volcanology and Geothermal Research, 1985. 26: p. 203-121.

11. Geist, D., T. Naumann, and P. Larson, Evolution of Galápagos Magmas: Mantle and Crustal Fractionation without Assimilation. Journal of Petrology, 1998. 39(5): p. 953-971.

12. Philander, S., et al., Why the ITCZ is mostly north of the equator? Journal of Climate, 1996.

13. Sweet, W.V., et al., Water Mass Seasonal Variability in the Galápagos Archipelago. Deep-Sea Research I, 2007. 54: p. 2023-2035.

14. Pörtner, H.O., Climate change and temperature - dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenshaften, 2001. 88: p. 137-146.

15. Houvenaghel, G.T., Oceanographic setting of the Galápagos Islands, in Galápagos, R. Perry, Editor. 1984, Pergamon Press: Oxford. p. 43-54.

16. Johnson, G.C., et al., Direct measurements of uppe ocean currents and water properties across the tropical Pacific during the 1990's. Progress in Oceanography, 2002. 52: p. 31-61.

17. Kessler, W., The circulation of the eastern tropical Pacific: A review. Progress in Oceanography, 2006. 69: p. 181-217.

18. Wirtky, K., Oceanography of the Eastern Equatorial Pacific Ocean. Oceanography and Marine Biology Annual Review, 1966. 4: p. 33-68.

19. Wirtky, K., An estimate of equatorial upwelling in the Pacific. Journal of Physical Oceanography, 1981. 11: p. 1205-1215.

20. Steger, J.M., C.A. Collins, and P.C. Chu, Circulation in the Archipiélago de Colón (Galápagos Islands). Deep-Sea Research II, 1998. 45(6): p. 1093-1114.

21. Houvenaghel, G.T., Oceanographic conditions in the Galápagos Archipelago and their relationship with life on the islands., in Upwelling ecosystems, R. Boje and M. Tomczak, Editors. 1978, Springer-Verlag: New York. p. 181-200.

22. Schaeffer, B.A., et al., Phytoplankton biomass distribution and identification of productive habitats within the Galapagos Marine Reserve by MODIS, a surface acquisition system and in-situ measurements. Remote Sensing of Environment, 2008. 112(6): p. 3044-3054.

23. Martin, J.H., Iron as a limiting factor in oceanic productivity, in Primary productivity and biogeochemical cycles in the sea, P.G. Falkowsky and A.D. Woodhead, Editors. 1992. p. 123-138.

24. Palacios, D., Oceanographic Conditions Around the Galápagos Archipelago and their Influence on Cetacean Community Structure., in College of Oceanic and Atmospheric Sciences. 2003, Oregon State University.

25. Palacios, D.M., Seasonal patterns of sea-surface temperature and ocean color around the Gal!apagos: regional and local influences. Deep-Sea Research II, 2004. 51: p. 43–57.

26. Banks, S., The use of AVHRR data in determining sea surface temperature zonation and variability across the Galápagos Marine Reserve, in Faculty of Science. School of Ocean and Earth Sciences. 1999, University of Southampton. p. 46.

27. Chelton, D.B., Report of the High-Resolution Ocean Topography Science Working Group Meeting. 2001, College of Oceanic and Atmospheric Sciences: Maryland. p. 232.

28. Delcourt, H.R. and P.A. Delcourt, Quaternary landscape ecology: Relevant scales in space and time. Landscape Ecology, 1988. 2(1): p. 23-44.

29. Miller, A.J. and N. Schneider, Interdecadal climate regime dynamics in the North Pacific Ocean: theories, observations and ecosystem impacts. Progress in Oceanography, 2000. 47: p. 355–379.

30. Ripa, P. and S. Hayes, Evidence for equatorial trapped waves at the Galapagos Islands. Journal of Geophysical Research, 1981. 86(C7): p. 6509-6516.

31. McPhaden, M. and B. Taft, Dynamics of seasonal and intraseasonal variability in the eastern equatorial Pacific. Journal of Physical Oceanography, 1988.

32. Philander, S., Equatorial Waves in the Presence of the Equatorial Undercurrent. Journal of Physical Oceanography, 1978. 9: p. 254-262.

33. Proehl, J.A., Equatorial Wave-Mean Flow Interaction: The Long Rossby Waves. Journal of Physical Oceanography, 1989. 20: p. 274-293.

34. Chelton, D.B., et al., Satellite Microwave SST observations of Transequatorial Tropical Instability Waves. Geophysical Reseach Letters, 2000. 27(9): p. 1239-1242.

35. Polito, P.S., et al., Oceanic and Atmospheric Anomalies of Tropical Instability Waves. Geophysical Reseach Letters, 2001. 28(11): p. 2233-22366.

36. Barber, R.T. and F.P. Chavez, Regulation of primary productivity rate in the equatorial Pacific. Limnology and Oceanography, 1991. 36(8): p. 1803-1815.

37. McPhaden, M., Evolution of the 2002/03 El Niño. Bulletin of the American Meteorological Society, 2004. 85(5): p. 677-695.

38. Wang, C., Atmospheric Circulation Cells Associated with the El Niño–Southern Oscillation. Journal of Climate, 2001. 15: p. 399-419.

39. McPhaden, M.J., Genesis and Evolution of the 1997-98 El Niño. Science, 1999. 283: p. 950-954.

40. Philander, S., El Niño and La Niña. Journal of the Atmospheric Sciences, 1985. 42(23): p. 2652-1662.

41. Philander, S.G., The Response of Equatorial Oceans to a Relaxation of the Trade Winds. Journal of Physical Oceanography, 1981. 11: p. 176 - 189.

42. Philander, S., El Niño, La Niña and the Southern Oscillation. 1990, San Diego, California: Academic Press Inc. 293.

43. Barber, R.T. and J.E. Kogelschatz, Nutrients and productivity during the 1982/83 El Niño. Elsevier oceanography series, 1990. 52(3): p. 21-53.

44. Koutavas, A., et al., El Nino-like pattern in ice age tropical Pacific sea surface temperature. Science, 2002. 297(5579): p. 226-230.

45. Riedinger, M.A., et al., A ~6100 14C yr record of El Niño activity from the Galápagos Islands. Journal of Paleolimnology, 2002. 27: p. 1–7.

46. Zhang, Y., J.M. Wallace, and D.S. Battisti, ENSO-like Interdecadal Variability: 1900-93. Journal of Climate, 1996. 10: p. 1004-1019.

47. Mantua, N. and S. Hare, The Pacific decadal oscillation. Journal of Oceanography, 2002. 58: p. 35-44.

48. Trueman, M., First pass assessment of climate change impacts for terrestrial biodiversity in Galapagos, in Galapagos and Climate Change: Final Technical Report from the Charles Darwin Foundation to CI and WWF Galapagos. 2009, Charles Darwin Foundation. p. 31-64.

49. Trenberth, K.E., et al., Observations: Surface and Atmospheric Climate Change., in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, et al., Editors. 2007, Cambridge University Press: Cambridge, United Kingdom - New York, NY, USA.

50. Cai, W. and P.H. Whetton, A Time-Varying Greenhouse Warming Pattern and the Tropical–Extratropical Circulation Linkage in the Pacific Ocean. Journal of Climate, 2001. 14: p. 3337-3355.

51. Hutchings, P., et al., Part II: Species and species groups. Chapter 11: Vulnerability of benthic invertebrates of the Great Barrier Reef to climate change, in Climate Change and the Great Barrier Reef: A Vulnerability Assessment. 2007. p. 309-356.

52. Munday, P.L., et al., Part II: Species and species groups. Chapter 12: Vulnerability of fishes of the Great Barrier Reef to climate change, in Climate Change and the Great Barrier Reef: A Vulnerability Assessment. 2007. p. 358-391.

53. WWF and CI. Vulnerability Assessment to Climate Change Workshop. 2009.

54. Ruttenberg, B.I., Effects of artisanal fishing on marine communities in the Galápagos Islands. Conservation Biology, 2001. 15(6): p. 1691-1699.

55. Sonnenholzner, J.I., L.B. Ladah, and K.D. Lafferty, Cascading effects of fishing on Galapagos rocky reef communities: reanalysis using corrected data. Marine Ecology Progress, 2009. 375: p. 209–218.

56. Carlton, J.T. and J.B. Geller, Ecological Roulette: The global transport of non-indigenous marine organisms. Science, 1993. 261: p. 78-82.

57. Clarke, K. and R. Gorley, PRIMER v6: User manual/tutorial: PRIMER E. 2006, Plymouth. 192.

58. Danulat, E. and G. Edgar, Reserva Marina de Galápagos. Línea Base de la Biodiversidad. 2002, Santa Cruz, Galápagos, Ecuador. 484.

59. Dufrene, M. and P. Legendre, Species assmblages and indicator species: the need for a flexible asymmetrical. Ecological monographs, 1997.

60. Field, J., K. Clarke, and R. Warwick, A practical estrategy for analyzing multispecies distribution paterns. Marine Ecology Progress, 1982.

1   2   3   4   5   6   7   8   9


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©atelim.com 2016
rəhbərliyinə müraciət