Ana səhifə

Observations géologiques sur les îles volcaniques


Yüklə 0.66 Mb.
səhifə8/12
tarix24.06.2016
ölçüsü0.66 Mb.
1   ...   4   5   6   7   8   9   10   11   12

Trachyte et Basalte.
Distribution des îles volcaniques

Retour à la table des matières

Descente des cristaux au sein de la lave liquide. — Poids spécifique des éléments constituants du trachyte et du basalte ; leur séparation subséquente. — Obsidienne. — Mélange apparent des éléments des roches plutoniques. — Origine des dykes de trapp plutoniques. — Distribution des îles volcaniques ; leur prédominance dans les grands océans. — Elles sont généralement disposées en lignes. — Les volcans centraux de Von Buch sont problématiques. — Iles volcaniques bordant des continents. — Ancienneté des îles volcaniques et leur soulèvement en masse. — Eruptions sur des lignes de fissure parallèles durant une même période géologique.



Séparation des minéraux constituants de la lave suivant leur poids spécifique. — Un des côtés de Fresh-Water Bay, à l’île James, est formé des débris d’un grand cratère, dont nous avons parlé dans le chapitre précédent, et dont l’intérieur a été comblé par une coulée de basalte présentant une puissance de 200 pieds environ. Ce basalte, de couleur grise, contient une grande quantité de cristaux d’albite vitreuse, qui deviennent beaucoup plus nombreux encore dans sa partie inférieure et scoriacée. C’est le contraire qu’on se serait attendu à voir, car, si à l’origine les cristaux avaient été répandus uniformément dans toute la masse, l’expansion plus considérable subie par cette partie scoriacée inférieure aurait du faire paraître plus petit le nombre des cristaux qui s’y trouvent. Von Buch 105 a décrit une coulée d’obsidienne du Pic de Ténérife, dans laquelle les cristaux de feldspath deviennent de plus en plus nombreux au fur et à mesure que la profondeur ou l’épaisseur augmente, de sorte que, près de la surface inférieure de la coulée, la lave ressemble même à une roche primitive. Von Buch constate, en outre, que M. Dree a trouvé par ses expériences sur la fusion de la lave que les cristaux de feldspath tendaient toujours à descendre au fond du creuset. Je crois qu’il n’est pas douteux que dans ces exemples les cristaux descendent sollicités par leur poids 106. Le poids spécifique du feldspath varie 107 de 2,4 à 2,58, tandis que celui de l’obsidienne paraît être ordinairement 2,3 à 2,4 ; et il serait probablement moindre si la roche était à l’état liquide, ce qui faciliterait la descente des cristaux de feldspath. À l’île James, les cristaux d’albite, quoique incontestablement moins lourds que le basalte gris aux endroits où il est compact, peuvent facilement avoir un poids spécifique supérieur à celui de la masse scoriacée, qui est formée de lave fondue et de bulles de gaz surchauffés.

La chute des cristaux au sein d’une substance visqueuse comme celle des roches fondues, et qui est incontestablement démontrée par les expériences de M. Dree, mérite un examen plus attentif, car ce phénomène éclaire le problème de la séparation des laves trachytiques et basaltiques. M.P. Scrope a étudié cette question, mais il paraît n’avoir eu connaissance d’aucun fait positif, comme ceux que je viens de signaler, et il a perdu de vue un facteur qui me semble indispensable dans l’étude du phénomène, c’est-à-dire l’existence à l’état de globules ou de cristaux tantôt du minéral le moins dense et tantôt du minéral le plus dense. Il est difficilement admissible que la faible différence de densité des particules séparées infiniment petites de feldspath, d’augite ou de quelque autre minéral, suffise à vaincre le frottement produit par leur mouvement au sein d’une substance dont la fluidité est imparfaite, telle qu’une roche en fusion ; mais, si les molécules d’un quelconque de ces minéraux se sont réunies en cristaux ou en granules pendant que les autres conservaient l’état liquide, on comprend facilement que la descente ou le flottage des minéraux auront été notablement facilités par suite de l’atténuation du frottement. D’un autre côté, si tous les minéraux ont pris l’état grenu au même instant, il est à peu près impossible qu’une séparation quelconque ait pu s’opérer, à cause de la résistance qu’ils devaient s’offrir mutuellement. On a fait dernièrement une découverte pratique importante qui montre le rôle que joue l’état grenu d’un élément contenu dans une masse fluide en favorisant la séparation de cette substance. Quand on agite d’une manière ininterrompue, pendant son refroidissement, du plomb fondu contenant une faible proportion d’argent, il devient grenu, et ces grains ou cristaux imparfaits de plomb presque pur descendent au fond du creuset en abandonnant un résidu de métal fondu beaucoup plus riche en argent ; tandis que si on laisse reposer le mélange en le maintenant à l’état liquide pendant un certain temps, les deux métaux ne montrent aucune tendance à se séparer 108. L’agitation paraît n’avoir d’autre effet que de provoquer la formation des grains séparés. Le poids spécifique de l’argent est 10,4 et celui du plomb 11,35 ; le plomb grenu qui tombe au fond du creuset n’est jamais absolument pur, et le résidu métallique liquide ne contient, au maximum, que 1/119 d’argent. Puisque la différence de densité due à la proportion très inégale suivant laquelle les deux métaux sont mélanges, est si excessivement faible, il est probable que celle qui existe entre le plomb liquide et le plomb grenu quoique encore chaud, intervient pour une grande part dans l’acte de la séparation.



D’après ces faits, si un des minéraux constitutifs d’une masse rocheuse volcanique liquéfiée qui repose pendant un certain temps sans subir aucune agitation violente, s’agrège en cristaux ou en grains, où s’il a été arraché en cet état à quelque roche plus ancienne, nous pouvons nous attendre à ce que ces cristaux ou ces grains flotteront à des niveaux plus ou moins élevés suivant leur poids spécifique relatif. Or, nous avons la preuve évidente que des cristaux ont été empâtés dans un grand nombre de laves pendant que la pâte ou la base demeurait fluide. Il me suffira de rappeler comme exemples les diverses grandes coulées pseudo-porphyritiques des îles Galapagos, et les coulées trachytiques de diverses régions, dans lesquelles nous trouvons des cristaux de feldspath ployés et brisés par le mouvement de la masse semi-liquide environnante. Les laves sont composées, en majeure partie, de trois variétés de feldspath, dont la densité oscille entre 2,4 et 2,74 ; de hornblende et d’augite, allant de 3 a 3,4, d’olivine variant de 3,3 à 3,4 et enfin d’oxydes de fer avec un poids spécifique de 4,8 à 5,2. Il en résulte que les cristaux de feldspath nageant dans une lave liquide mais peu vésiculaire, tendront à s’élever vers la surface, et que les cristaux ou les grains des autres minéraux tendront à descendre. Nous ne devons pas nous attendre cependant à constater une séparation parfaite au sein de substances aussi visqueuses. Le trachyte, qui consiste principalement en feldspath avec un peu de hornblende et d’oxyde de fer, à un poids spécifique d’environ 2,45 109, tandis que le basalte, composé en majeure partie d’augite et de feldspath, auquel s’ajoute souvent une forte proportion de fer et d’olivine, atteint une densité de 3,0. Conséquemment nous remarquons que dans les endroits où des coulées basaltiques et trachytiques ont été émises d’un même cratère, les coulées de trachyte ont généralement fait éruption les premières, parce que, comme nous devons le supposer, la lave fondue appartenant à cette série s’était accumulée à la partie supérieure du foyer volcanique. Cette succession a été observée par Beudant, Scrope et d’autres auteurs, et j’en ai donné trois exemples dans cet ouvrage. Pourtant, comme les dernières éruptions d’un grand nombre de volcans se sont fait jour au travers des parties inférieures de ces montagnes, par suite de l’accroissement de la hauteur et du poids de la colonne interne de roche fondue, nous voyons pourquoi dans la plupart des cas les flancs inférieurs des masses trachytiques centrales sont seuls enveloppes de coulées basaltiques. Peut-être la séparation des éléments d’une masse lavique s’opère-t-elle quelquefois dans l’intérieur d’une montagne volcanique, dont la hauteur et les autres dimensions sont suffisamment grandes, au lieu de se faire dans le foyer souterrain. Dans ce cas, des coulées de trachyte provenant du sommet de ce volcan, et des coulées de basalte émanées de sa base peuvent être éjaculées presque simultanément ou à des intervalles très rapprochés ; c’est ce qui paraît s’être produit à Ténérife 110. Il me suffira de faire remarquer en outre que, naturellement, la séparation des deux séries doit souvent être entravée par suite de bouleversements violents, même quand les conditions lui sont favorables, et que, de même, leur ordre d’éruption ordinaire doit être interverti. En bien des cas, peut-être, les laves basaltiques ont seules atteint la surface, à cause du haut degré de fluidité de la plupart d’entre elles.

Nous avons vu dans l’exemple décrit par Von Buch que des cristaux de feldspath descendent au sein de l’obsidienne vers la partie inférieure de la masse, parce que leur poids spécifique est plus élevé, comme on le sait, que celui de cette roche ; nous pouvons donc nous attendre à constater dans toute région trachytique où l’obsidienne a coulé à l’état de lave, qu’elle a été émise par les orifices supérieurs, ou occupant la plus grande altitude. D’après Von Buch, ce fait se confirme d’une manière remarquable, tant aux îles Lipari qu’au pic de Ténérife. En ce dernier point l’obsidienne ne s’est jamais écoulée par des orifices situés à moins de 9 200 pieds de hauteur. L’obsidienne paraît avoir été éjaculée aussi par les pics les plus élevés de la Cordillère péruvienne. Je me borne à faire observer, en outre, que le poids spécifique du quartz varie de 2,6 à 2,8, et que par conséquent, lorsque ce minéral existe dans un foyer volcanique, il ne doit pas tendre à descendre avec la masse fondamentale basaltique ; ceci explique peut-être la présence fréquente et l’abondance du quartz au sein des laves trachytiques, déjà signalées à plusieurs reprises dans cet ouvrage.

Peut-être objectera-t-on à la théorie que je viens d’exposer le fait que les roches plutoniques ne sont pas divisées en deux séries nettement distinctes et de pesanteur spécifique différente, quoiqu’elles aient passé par l’état liquide comme les roches volcaniques. Pour répondre à cette objection, il convient de faire remarquer d’abord qu’aucune preuve ne démontre que les atomes d’un quelconque des minéraux constitutifs des roches plutoniques se soient agrégés, tandis que les autres minéraux restaient fluides, ce qui est une condition presque indispensable de leur séparation, comme nous nous sommes efforcés de le prouver ; au contraire, les cristaux se sont moulés généralement les uns sur les autres 111.

En second lieu, le calme absolu qui a présidé, selon toute probabilité, au refroidissement des masses plutoniques ensevelies a de grandes profondeurs, devait être très probablement fort défavorable à la séparation de leurs minéraux constitutifs, car, si la force attractive qui rapproche les molécules des divers minéraux pendant le refroidissement progressif de la masse est suffisante pour les maintenir réunies, le frottement entre ces cristaux à demi formés ou ces globules pâteux doit empêcher les plus lourds d’entre eux de descendre au fond du bain et les plus légers de monter. D’autre part, les petites perturbations qui doivent probablement se produire dans la plupart des foyers volcaniques, et qui ne suffiraient pas, comme nous l’avons vu, à empêcher la séparation de grains de plomb dans un mélange de plomb et d’argent en fusion ou de cristaux de feldspath dans une coulée de lave, pourraient pourtant amener la rupture et une nouvelle fusion des globules les moins bien formés, permettant aux cristaux les mieux formés, et qui pour cette raison ne se brisent pas, de descendre ou de monter suivant leur pesanteur spécifique.



Quoiqu’on ne constate pas dans les roches plutoniques l’existence des deux types distincts correspondant aux séries trachytique et basaltique, j’ai lieu de croire qu’il s’est produit souvent une séparation plus ou moins prononcée de leurs parties constitutives. Je soupçonne qu’il doit en être ainsi, parce que j’ai observe la grande fréquence avec laquelle des dykes de greenstone et de basalte coupent les formations étendues de granite et de roches métamorphiques qui s’y rattachent. Je n’ai jamais étudié un district d’une région granitique étendue sans y découvrir des dykes ; je puis citer comme exemples les nombreux dykes de trapp que l’on rencontre dans plusieurs provinces du Brésil, du Chili, de l’Australie, et au cap de Bonne-Espérance ; de même, il existe un grand nombre de dykes dans les vastes contrées granitiques de l’Inde, du nord de l’Europe et d’autres pays. D’ou le greenstone et le basalte qui forment ces dykes sont-ils venus ? Devons-nous supposer, avec quelques anciens géologues, qu’une zone de trapp s’étend uniformément sous les roches granitiques qui, suivant l’état actuel de nos connaissances, constituent la base de l’écorce du globe ? N’est-il pas plus vraisemblable de croire que ces dykes sont dus à des fissures sillonnant des roches granitiques et métamorphiques imparfaitement refroidies, dont les éléments les plus fusibles consistant surtout en hornblende ont été en quelque sorte sollicités à monter dans ces fissures ? A Bahia, au Brésil, j’ai vu dans une contrée de gneiss et de greenstone primitif, de nombreux dykes constitues par une roche à augite de couleur foncée (car un cristal que j’ai détaché appartenait incontestablement à ce minéral), ou par une roche amphibolique formée, comme plusieurs preuves le démontraient clairement, avant la solidification de la masse environnante, ou ayant subi plus tard un ramollissement complet simultanément avec cette masse 112. Des deux côtés de l’un de ces dykes le gneiss était pénétré, à la profondeur de plusieurs yards, par de nombreux fils ou striés curvilignes d’une matière à teinte foncée et dont la forme ressemblait à celle des nuages désignés sous le nom de « cirrhi-comae » ; on pouvait suivre quelques-uns de ces filaments jusqu’à leur point de jonction avec le dyke. Lorsque je les examinai, il me parut douteux que des veines aussi fines et aussi curvilignes aient pu être injectées, et je crois maintenant, qu’au lieu d’avoir été injectées par le dyke, elles ont été, au contraire, comme ses vaisseaux nourriciers. Si on admet comme vraisemblable cette théorie sur l’origine des dykes de trapp dans des régions granitiques très étendues, et loin de roches appartenant à quelque autre série, nous pouvons admettre aussi que, quand une grande masse de roche plutonique est poussée par des efforts répétés dans l’axe d’une chaîne de montagnes, ses éléments les plus liquides peuvent s’écouler dans des abîmes profonds et inconnus, pour être ultérieurement ramenés, peut-être, à la surface sous forme de masses injectées de greenstone, de porphyre augitique 113 ou d’éruptions basaltiques. La plupart des difficultés que les géologues ont rencontrées en comparant les roches volcaniques et plutoniques au point de vue de leur composition se trouvent résolues, je pense, si nous pouvons admettre que ces éléments relativement lourds et fusibles qui composent les roches basaltiques et trappéennes, ont été partiellement éliminés du plus grand nombre des masses plutoniques.

Distribution des îles volcaniques. — Au cours de mes recherches sur les récifs coralliens, j’ai eu l’occasion de consulter les écrits d’un grand nombre de voyageurs, et j’ai été constamment frappé du fait, qu’à peu d’exceptions près, les îles innombrables qui parsèment le Pacifique, l’océan Indien et l’Atlantique sont formées soit de roches volcaniques, soit de roches coralliennes récentes. Citer une longue liste de toutes les îles volcaniques serait fastidieux, mais il est facile d’énumérer les exceptions que j’ai rencontrées. Dans l’Atlantique nous avons les rochers de Saint-Paul décrits dans cet ouvrage, et les îles Falkland formées de schiste quartzeux et argileux ; mais ces dernières îles sont fort grandes et ne sont pas très éloignées de la côte de l’Amérique méridionale 114. Dans l’océan Indien, les Seychelles (situées sur une ligne qui prolonge Madagascar) consistent en granite et en quartz. Dans l’océan Pacifique, la Nouvelle-Calédonie, qui est une grande île, appartient (pour autant que sa constitution soit connue) à la classe des roches primitives ; la Nouvelle-Zélande, qui possède beaucoup de roches volcaniques et quelques volcans en activité, est trop étendue pour que nous puissions la ranger parmi les petites îles dont nous nous occupons en ce moment. La présence de quelques roches non volcaniques, telles que des schistes argileux dans trois des Açores 115, de calcaire tertiaire à Madère, de schiste argileux à l’île Chatham dans le Pacifique, ou de lignite à l’île de Kerguelen, ne doit pas faire exclure ces îles ou ces archipels de la classe des îles volcaniques, si elles sont formées principalement de matières éruptives.

La constitution de ces nombreuses îles qui parsèment les grands océans, étant presque toujours volcanique à ces rares exceptions près, se rattache évidemment à la loi suivant laquelle presque tous les volcans actifs forment des îles où sont situés près du rivage de la mer ; elle est un effet des phénomènes chimiques ou mécaniques qui ont déterminé cette répartition des volcans. Le fait que les îles océaniques sont si généralement volcaniques est intéressant aussi au point de vue de la nature des chaînes de montagnes de nos continents, qui, a peu d’exceptions près, ne sont pas volcaniques, quoique cependant nous ayons des raisons de supposer qu’un océan s’étendait autrefois sur l’espace occupe aujourd’hui par les continents. Nous sommes amenés à nous demander si les éruptions volcaniques se produisent plus facilement au travers des fissures qui se sont formées pendant les premières phases de la transformation du lit de la mer en une surface terrestre.

Quand on examine les cartes des nombreux archipels volcaniques, on voit que les îles sont ordinairement disposées en rangées, simples, doubles ou triples, suivant des lignes souvent légèrement courbes 116. Chacune des îles du groupe est arrondie, ou plus ordinairement allongée dans le même sens que le groupe dont elle fait partie, mais parfois transversalement a cette direction. Certains groupes dont l’allongement n’est pas fortement accentué offrent peu de symétrie dans leurs formes ; M. Virlet 117 constate que ce cas se présente pour l’archipel grec ; je suis porté à penser (car je sais combien il est facile de se tromper en ces matières) que les orifices volcaniques sont ordinairement alignés suivant une même droite ou sur une série de lignes parallèles peu longues, coupant presque à angle droit une autre ligne ou une autre série de lignes. L’archipel des Galapagos offre un exemple de cette structure, car la plupart des îles et les principaux cratères situés dans les plus grandes d’entre elles sont groupés de manière à se disposer sur un système de lignes orienté N.-N.-W. et sur un autre système dirigé W.-S.-W. ; nous trouvons une structure du même genre, mais plus simple, dans l’archipel des Canaries. Dans le groupe du Cap Vert qui paraît être le moins symétrique de tous les archipels océaniques de nature volcanique, une ligne dessinée par plusieurs îles et courant N.-W.-S.-E. couperait presque à angle droit, si on la prolongeait, une courbe jalonnée par les autres îles.

Von Buch 118 a classé tous les volcans en deux catégories : les volcans centraux autour desquels des éruptions se sont produites en grand nombre, de tous côtés, d’une manière presque régulière, et les chaînes volcaniques. Dans les exemples que l’auteur donne pour les volcans de la première catégorie je ne puis découvrir, au point de vue de leur situation, aucune raison qui justifie la qualification de centraux, et il n’existe, à mon avis, aucune différence essentielle de constitution minéralogique entre les volcans centraux et les chaînes volcaniques. Sans doute, dans la plupart des petits archipels volcaniques l’une des îles peut être beaucoup plus élevée que les autres ; de même que dans une île donnée un des orifices est généralement plus haut que tous les autres, quelle que puisse être la cause de ce fait. Von Buch ne range pas dans sa classe des chaînes volcaniques, de petits archipels dont il admet que les îles sont alignées, comme il le fait pour les Açores, mais il est difficile de croire qu’il existe quelque différence essentielle entre les chaînes volcaniques plus ou moins allongées. Si l’on jette un coup d’œil sur une mappemonde, on constate combien sont parfaites les transitions qui unissent de petits groupes d’îles volcaniques alignées aux séries presque ininterrompues d’archipels se suivant en ligne droite, et finalement à une grande muraille comme la Cordillere américaine. Von Buch soutient 119 que des chaînes volcaniques couronnent des chaînes de montagnes de formation primitive, ou sont en rapport intime avec elles ; mais si, dans le cours des temps, des archipels allonges sont transformes en chaînes de montagnes sous l’action prolongée des forces de soulèvement et éruptives, il en résultera naturellement que les roches primitives inférieures seront souvent soulevées et deviendront visibles.

Quelques auteurs ont fait remarquer que les îles volcaniques sont répandues, quoiqu’à des distances très inégales, le long des rivages des grands continents, comme si elles étaient, jusqu’à un certain point, en rapport avec eux. Pour l’île de Juan Fernandez, située à 330 milles de la côte du Chili, il existait indubitablement un rapport entre les forces volcaniques agissant sous cette île et celles qui agissaient sous le continent, comme cela a été montré par le tremblement de terre de 1835. En outre, les îles de quelques-uns des petits groupes volcaniques bordant des continents, comme nous venons de le dire, sont situées sur des lignes qui présentent une relation avec la direction que suivent les rivages voisins. Je citerai comme exemples les lignes d’intersection aux archipels des Galapagos et du Cap Vert, et la ligne la mieux définie des îles Canaries. Si ces faits ne sont pas purement fortuits, nous voyons qu’un grand nombre d’îles volcaniques éparpillées et de petits groupes sont mis en rapport avec les continents voisins, non seulement par leur proximité, mais encore par la direction des fentes d’éruption, relation que Von Buch considère comme caractéristique pour ses grandes chaînes volcaniques.

Dans les archipels volcaniques il est rare que les cratères soient en activité à la fois dans plus d’une île, et les grandes éruptions ne se produisent d’habitude qu’à de longs intervalles. En considérant le grand nombre de cratères que chaque île d’un groupe porte habituellement et la quantité énorme de matières qu’ils ont émises, on est porté à attribuer une très grande ancienneté à ces groupes, même à ceux dont l’origine paraît relativement récente, comme l’archipel des Galapagos. Cette conclusion concorde avec l’érosion prodigieuse que l’action lente de la mer doit avoir fait subir à leurs côtés, primitivement inclinées en pente douce et qui ont dû, si souvent, reculer en se transformant en hautes falaises. Nous ne devons pas croire, cependant, que la masse entière des matières qui forment une île volcanique ait été toujours émise au niveau qu’elle occupe actuellement ; le grand nombre de dykes qui semblent invariablement sillonner l’intérieur de tout volcan prouve, d’après les principes exposés par M. Elie de Beaumont, que la masse entière a été soulevée et fissurée. En outre, je crois avoir démontré dans mon travail sur les récifs coralliens, qu’il existe un rapport entre les éruptions volcaniques et les soulèvements contemporains s’opérant en masse 120 et qui est atteste tant par la présence fréquente de débris organiques soulevés que par la structure des récifs coralliens établis sur les roches volcaniques. Je dois faire observer enfin que des éruptions se sont produites dans un même archipel, depuis le commencement des temps historiques, sur plus d’une des lignes de fissure parallèles ; ainsi dans l’archipel des Galapagos on a signalé les éruptions d’un cratère de l’île Narborough et d’un cratère de l’île Albemarle, qui ne se trouvent pas sur la même ligne ; aux îles Canaries des éruptions se sont produites à Ténérife et à Lanzarote ; et aux Açores sur les trois lignes parallèles de Pico, de Saint-Georges et de Terceira. Ce fait me paraît intéressant si nous admettons qu’il n’existe d’autre différence essentielle entre une chaîne de montagnes et un volcan que celle qui distingue une injection de roches plutoniques d’une éjaculation de matières volcaniques, car il nous permet d’admettre comme probable que lors du soulèvement des chaînes de montagnes deux ou plusieurs des lignes parallèles d’une chaîne puissent avoir été soulevées et injectées pendant une même période géologique.

Observations géologiques
sur les îles volcaniques (1844)
Chapitre VII

1   ...   4   5   6   7   8   9   10   11   12


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©atelim.com 2016
rəhbərliyinə müraciət