Ana səhifə

Observations géologiques sur les îles volcaniques


Yüklə 0.66 Mb.
səhifə4/12
tarix24.06.2016
ölçüsü0.66 Mb.
1   2   3   4   5   6   7   8   9   ...   12

ASCENSION
Retour à la table des matières

Laves basaltiques. — Nombreux cratères tronqués du même côté. — Structure singulière de bombes volcaniques. — Explosions de masses gazeuses. — Fragments granitiques éjaculés. — Roches trachytiques. — Veines remarquables. — Jaspe, son mode de formation. — Concrétions dans le tuf ponceux. — Dépôts calcaires et incrustations dendritiques sur la côte. — Couches laminées alternant avec de l’obsidienne et passant à cette roche. — Origine de l’obsidienne. — Lamination des roches volcaniques.

Cette île est située dans l’océan Atlantique, par 8 deg. lat. S. et 14 deg. long. W. Elle a la forme d’un triangle irrégulier (Voir la carte ci-jointe), dont chaque côté mesure environ 6 milles de longueur. Son point culminant se trouve à 2 870 pieds 19 au-dessus du niveau de la mer. Elle est entièrement volcanique, et, vu l’absence de preuves contraires, je la crois d’origine subaérienne. La roche fondamentale est de nature feldspathique, elle offre partout une couleur pâle, et elle est généralement compacte. Dans la région sud-est de l’île, qui est aussi la plus élevée, on trouve du trachyte bien caractérisé et d’autres roches analogues appartenant à cette famille lithologique si variée. La circonférence presque tout entière est couverte de coulées de lave basaltique noire et rugueuse : on y voit poindre de-ci de-là une colline ou une simple pointe de rocher constituées par du trachyte qui n’a pas été recouvert. L’un de ces pointements, près du bord de la mer, au nord du fort, n’a que 2 ou 3 yards de diamètre.

Roches basaltique. — La lave basaltique sous-jacente est extrêmement celluleuse en certains points, beaucoup moins en d’autres ; sa couleur est noire, mais elle contient quelquefois des cristaux de feldspath vitreux, parfois aussi, mais rarement, une grande quantité d’olivine. Ces coulées semblent avoir été singulièrement peu fluides ; leurs parois et leur extrémité sont très escarpées, et n’ont pas moins de 20 à 30 pieds de haut. Leur surface est extraordinairement raboteuse, et à distance elle paraît parsemée d’un grand nombre de petits cratères. Ces intumescences sont des monticules larges, irrégulièrement coniques, traverses de fissures, et formés par un basalte plus ou moins scoriacé, comme les coulées environnantes, mais possédant une structure colonnaire mal définie : leur hauteur au-dessus de la surface générale varie de 8 a 30 pieds, et ils ont été formés, je pense, par l’accumulation de la lave visqueuse aux points où elle rencontrait une plus grande résistance. A la base de plusieurs de ces monticules, et parfois aussi en des parties plus horizontales de la coulée, des côtes épaisses s’élèvent à 2 ou 3 pieds au-dessus de la surface ; elles sont formées de masses de basalte angulo-globulaires, ressemblant par leur forme et par leur dimension à des tuyaux de terre cuite recourbés, ou à des gouttières de la même matière, mais elles ne sont pas creuses : j’ignore quelle peut avoir été leur origine. Un grand nombre de fragments superficiels de ces coulées basaltiques offrent des formes singulièrement contournées, et plusieurs spécimens ressemblent, à s’y méprendre, à des blocs de bois de couleur sombre sans écorce.

Plusieurs des coulées basaltiques peuvent être suivies, soit jusqu’aux points d’éruption à la base de la grande masse centrale de trachyte, soit jusqu’à des collines isolées, coniques, de teinte rougeâtre, qui sont éparpillées sur le littoral du nord et de l’ouest de l’île. Du haut de l’éminence centrale, j’ai compté vingt à trente de ces cônes d’éruption. Le sommet tronqué de la plupart d’entre eux est coupé obliquement, et tous présentent une pente vers le sud-est, point d’où souffle le vent alizé 20. Cette structure est due, sans aucun doute, à l’action du vent, qui a poussé en plus grande quantité dans un sens que dans l’autre les fragments et les cendres rejetés pendant les éruptions. M. Moreau de Jonnes a fait une observation semblable pour les volcans des Antilles.



Bombes volcaniques. — On les rencontre en grand nombre, répandues sur le sol, et quelques-unes d’entre elles se trouvent à une distance considérable de tout point d’éruption. Leur dimension varie de celle d’une pomme à celle du corps d’un homme ; elles sont sphériques ou pyriformes, et l’extrémité postérieure (qui répondrait à la queue d’une comète) est irrégulière et hérissée de pointes saillantes ; elle peut même être concave. Leur surface est rugueuse et traversée de fentes ramifiées ; leur structure interne est irrégulièrement scoriacée et compacte, ou offre un aspect symétrique fort remarquable. La gravure représente très exactement un segment irrégulier d’une bombe appartenant à cette dernière espèce, et dont j’ai trouvé plusieurs spécimens. Elle avait à peu près la grandeur d’une tête d’homme. La partie interne tout entière est grossièrement celluleuse ; le diamètre moyen des vacuoles est d’un dixième de pouce environ, mais leur dimension décroît graduellement vers la partie externe de la bombe. Cette partie interne est entourée d’une croûte de lave compacte, nettement limitée, offrant une épaisseur presque uniforme d’environ un tiers de pouce. La croûte est recouverte d’une enveloppe un peu plus épaisse de lave finement celluleuse (dont les vacuoles varient en diamètre d’un cinquantième à un centième de pouce), et qui forme la surface extérieure. La limite qui sépare la croûte de lave compacte de l’enduit scoriacé externe est nettement définie. On peut facilement se rendre compte de cette structure en supposant qu’une masse de matière visqueuse et scoriacée soit projetée dans l’air, et animée d’un mouvement rotatoire rapide. En effet, pendant que la croûte extérieure se solidifiait par refroidissement (et prenait l’état ou nous la voyons aujourd’hui), la force centrifuge, en réduisant la pression à l’intérieur de la bombe, devait permettre aux vapeurs chaudes de dilater les vacuoles, mais celles-ci, comprimées par la même force contre la croûte déjà solidifiée, devaient diminuer graduellement de volume, et à mesure qu’elles étaient plus rapprochées de cette croûte externe, leur volume devait toujours aller se réduisant jusqu’au moment où la partie interne était emprisonnée dans une croûte massive concentrique. Nous savons que des éclats peuvent être projetés d’une meule (3) lorsqu’elle est animée d’un mouvement de rotation assez rapide, nous ne devons donc pas douter que la force centrifuge soit assez puissante pour modifier, comme nous le supposons ici, la structure d’une bombe encore à l’état plastique. Des géologues ont fait observer que la forme extérieure d’une bombe nous révèle immédiatement l’histoire de sa course aérienne, et nous constatons maintenant que sa structure interne peut nous redire presque aussi clairement le mouvement rotatoire dont elle était animée.

[Illustration : Fig. 3. — Fragment d’une bombe volcanique sphérique, dont la partie interne grossièrement celluleuse est entourée d’une couche de lave compacte recouverte d’une croûte formée par une roche finement celluleuse.]

M. Bory de Saint-Vincent 21 a décrit des masses arrondies de lave trouvées à l’île Bourbon, qui ont une structure tout à fait semblable ; pourtant son interprétation (si je la comprends bien) est fort différente de celle que j’ai donnée, car il suppose que ces corps ont roulé, comme des boules de neige, le long des flancs du cratère.

M. Beudant 22 a décrit de singulières petites sphères d’obsidienne, dont le diamètre ne dépasse jamais 6 à 8 pouces, et qu’il a trouvées répandues à la surface du sol. Elles sont toujours de forme ovale, parfois elles sont fortement renflées par le milieu, et même fusiformes ; leur surface est recouverte de crêtes et de sillons concentriques, disposés avec une certaine régularité, et qui sont tous perpendiculaires à un axe du globule ; la partie interne est compacte et vitreuse. M. Beudant suppose que des masses de lave encore plastique ont été projetées dans l’air et animées d’un mouvement rotatoire autour d’un même axe, ce qui a détermine la forme de la bombe et des côtes superficielles. Sir Thomas Mitchell m’a donné un échantillon qui semble être, à première vue, la moitié d’un globe d’obsidienne fortement aplati ; il a singulièrement l’aspect d’un objet artificiel, et cet aspect est exactement représenté (en grandeur naturelle) dans la gravure ci-jointe. Cet échantillon a été trouvé, tel que nous le voyons, dans une grande plaine sablonneuse, entre les rivières Darling et Murray en Australie, et a plusieurs centaines de milles de toute région volcanique connue. Il paraît avoir été enfoui dans une matière tufacée rougeâtre, et peut-être a-t-il été transporté par les aborigènes ou par des agents naturels. La coupe ou enveloppe externe est formée d’obsidienne compacte, de couleur vert bouteille, et elle est remplie de lave noire finement celluleuse beaucoup moins transparente et moins vitreuse que l’obsidienne. La surface extérieure porte quatre ou cinq côtes assez peu nettes, que dans la figure on a peut-être représentées en les exagérant. Nous avons donc ici la structure externe décrite par M. Beudant et la nature celluleuse interne des bombes de l’Ascension. La lèvre de la coupe extérieure est légèrement concave, exactement comme le bord d’une assiette creuse, et son bord interne surplombe un peu de lave cellulaire centrale. Cette structure est tellement symétrique sur toute la circonférence, qu’on est obligé d’admettre que la bombe a fait explosion pendant sa course aérienne, alors qu’elle était encore animée d’un mouvement de rotation, avant d’être entièrement solidifiée, et que la lèvre et les bords ont été ainsi légèrement modifiés et infléchis vers l’intérieur. On peut observer que les côtes extérieures sont situées dans des plans perpendiculaires à un axe oblique au grand axe de l’ovoïde aplati : nous devons supposer, pour expliquer ce fait, que, lors de l’explosion de la bombe, l’axe de rotation a subi un deplacement.



[Illustration : FIG. 4. — Bombe volcanique d’obsidienne d’Australie, vue de face dans la figure supérieure et de profil dans la figure inférieure.]

Explosions de masses gazeuses. — Les flancs de Green Mountain et la contrée environnante sont couverts d’une grande quantité de fragments incohérents, formant une masse épaisse de quelques centaines de pieds. Les couches inférieures consistent généralement en tufs à grain fin à peine consolidés 23, et les lits supérieurs en grands fragments détachés, alternant avec des lits de matières moins grossières 24. Une couche blanche rubanée de brèche ponceuse décomposée était reployée d’une façon remarquable en fortes courbes ininterrompues, au-dessous de chacun des grands fragments du banc surincombant. Je suppose, d’après la position relative de ces bancs, qu’un cratère à orifice étroit, occupant à peu près l’emplacement de Green Mountain, a lancé comme un énorme fusil à air, avant son extinction finale, cette vaste accumulation de matériaux meubles. Des dislocations très importantes se sont produites postérieurement à cet évènement, et un cirque ovale a été forme par affaissement. Cet espace affaissé se trouve au pied nord-est de Green Mountain, et il est nettement indiqué sur la carte qui accompagne cet ouvrage. Son grand axe, répondant à une ligne de fissure dirigée N.-E.-S.-W., à une longueur de trois cinquièmes de mille marin ; les bords de ce cirque sont presque verticaux, sauf en un seul point, et ont à peu près 400 pieds de hauteur ; à la partie inférieure ils sont constitués par un basalte feldspathique de couleur pâle, et à la partie supérieure par du tuf et par des fragments projetés à l’état incohérent ; le fond est uni, et sous tout autre climat il se serait forme en cet endroit un lac profond. A juger par l’épaisseur du banc de fragments incohérents qui recouvre la contrée environnante, la masse de matière gazeuse qui les a projetés doit avoir été énorme. Nous pouvons conclure vraisemblablement de ces faits, qu’après l’explosion, de vastes cavernes auront été formées sous le sol, et que l’écroulement de la voute de l’une d’entre elles a formé la cavité que nous venons de décrire. Dans l’archipel des Galapagos on rencontre souvent des fosses d’un caractère semblable, mais de dimension beaucoup moindre, à la base de petits cônes d’éruption.

Fragments granitiques projetés. — Il n’est pas rare de trouver dans le voisinage de Green Mountain des fragments de roches hétérogènes empâtés dans des masses de scories. Le lieutenant Evans, à l’amabilité duquel je dois un grand nombre de renseignements, m’en a donné plusieurs spécimens, et j’en ai trouvé d’autres moi-même. Ils ont presque tous une structure granitique, ils sont cassants, rudes au toucher, et leur couleur est évidemment altérée : 1. Une syénite blanche, rayée et tachetée de rouge, elle est formée de feldspath bien cristallisé, de nombreux grains de quartz et de cristaux de hornblende brillants quoique petits. Le feldspath et la hornblende de cet échantillon et de ceux dont on parlera dans la suite ont été déterminés à l’aide du goniomètre à réflexion, et le quartz par sa manière d’être au chalumeau. D’après son clivage, le feldspath de ces fragments projetés ainsi que la variété vitreuse que l’on trouve dans le trachyte, est un feldspath potassique. — 2. Une masse rouge brique de feldspath, de quartz et de petites plages d’un minéral décomposé dont un petit fragment m’a montré le clivage de la hornblende. — 3. Une masse de feldspath blanc à cristallisation confuse, avec de petits nids d’un minéral de couleur sombre, souvent cariés, arrondis sur les bords, à cassure luisante, mais sans clivage distinct ; sa comparaison avec le second spécimen m’a démontré que c’était de la hornblende fondue. — 4. Une roche qui, à première vue, semble être une simple agrégation de grands cristaux distincts de Labrador gris 25 ; mais dans les interstices de ces cristaux il y a un peu de feldspath grenu blanc, de nombreuses paillettes de mica, et un peu de hornblende altérée ; je ne crois pas qu’il y ait du quartz. J’ai décrit ces fragments en détail parce qu’on rencontre rarement 26 des roches granitiques projetées par des volcans et dont les minéraux n’aient pas subi de modifications, comme c’est le cas pour le premier spécimen, et dans une certaine mesure pour le second. Un autre grand bloc trouvé ailleurs mérite d’être signalé ; c’est un conglomérat contenant de petits fragments de roches granitiques, celluleuses et jaspeuses, et de porphyre pétro-siliceux empâtés dans une masse fondamentale de wacke et traversés d’un grand nombre de couches minces de rétinite concrétionnée passant à l’obsidienne. Ces couches sont parallèles, peu étendues, et légèrement incurvées, elles s’amincissent à leurs extrémités et rappellent par leur forme les couches de quartz dans le gneiss. Il est probable que ces petits fragments empâtes n’ont pas été projetés à l’état isolé, mais qu’ils étaient empâtes dans une roche volcanique fluide, voisine de l’obsidienne ; nous allons voir que plusieurs variétés appartenant à la série de cette dernière roche possédent une structure laminaire.

Roches trachytiques. — Elles occupent la partie la plus élevée et la plus centrale de l’île, ainsi que la région du sud-est. Le trachyte est ordinairement d’une couleur brun pâle, tachetée de points plus foncés ; il contient des cristaux de feldspath vitreux brisés et ployés, des grains de fer spéculaire et des points microscopiques noirs que je considère comme étant de la hornblende parce qu’ils sont aisément fusibles et qu’alors ils deviennent magnétiques. Cependant la plupart des collines sont formées d’une pierre très blanche, friable, et qui semble être un tuf trachytique. L’obsidienne, le hornstone et diverses espèces de roches feldspathiques laminaires sont associes au trachyte. On n’observe pas de stratification distincte, et je n’ai pu découvrir de structure cratériforme dans aucune des collines de cette série. Il s’est produit des dislocations considérables, et plusieurs des crevasses de ces roches sont encore béantes, ou ne sont que partiellement comblées par des fragments détachés. Quelques coulées basaltiques se sont avancées sur l’aire 27 ou s’étale le trachyte ; et non loin du sommet de Green Mountain on voit une coulée de basalte vésiculaire absolument noir, contenant de petits cristaux de feldspath vitreux d’aspect arrondi.

La pierre blanche tendre, mentionnée plus haut, est remarquable par la ressemblance frappante qu’elle offre avec un tuf sédimentaire lorsqu’on la voit en masse ; j’ai été longtemps sans pouvoir me convaincre que telle n’était pas son origine, et d’autres géologues ont éprouve les mêmes hésitations pour des formations presque identiques, dans des régions trachytiques. En deux points, cette pierre blanche terreuse forme des collines isolées, en un troisième elle est associée à du trachyte colonnaire et laminaire, mais je n’ai pu reconnaître la trace d’un contact. Cette roche contient de nombreux cristaux de feldspath vitreux et des points noirs microscopiques, et elle est mouchetée de petites taches plus foncées, exactement comme le trachyte environnant. Pourtant sa pâte vue au microscope, paraît généralement terreuse, mais parfois elle offre une structure nettement cristalline. Sur la colline désignée sous le nom de Crater of an old volcano, elle passe à une variété d’un gris verdâtre pâle, qui n’en diffère que par la couleur, et parce qu’elle n’est pas aussi terreuse ; en un endroit, le passage s’opère insensiblement ; en un autre, il se fait par l’intermédiaire de nombreuses masses anguleuses et arrondies de la variété verdâtre englobées dans la variété blanche ; — dans ce dernier cas, l’aspect ressemble beaucoup à celui d’un dépôt sédimentaire disloqué et érodé pendant la formation d’une couche plus récente. Ces deux variétés de roches sont traversées d’innombrables veines tortueuses (que je décrirai plus loin) ; elles ne ressemblent en rien aux dykes injectés ni aux veines que j’ai pu observer ailleurs. Les deux variétés renferment quelques fragments isolés, et de dimension variable, de roches scoriacées à teinte foncée ; les vacuoles d’un certain nombre de ces fragments sont partiellement remplies par la pierre blanche terreuse. Les deux variétés renferment aussi d’énormes blocs d’un porphyre cellulaire 28. Ces fragments font saillie au-dessus de la surface de la roche altérée, et ressemblent tout à fait à des fragments empâtes dans un tuf sédimentaire. Mais ce fait n’est pas un argument sérieux en faveur de l’origine sédimentaire de la pierre blanche terreuse 29 car on sait que le trachyte colonnaire, la phonolite 30 et d’autres laves compactes renferment quelquefois des fragments étrangers de roches celluleuses. Le passage insensible de la variété verdâtre à la variété blanche, et de même, le passage plus brusque d’une roche à l’autre détermine par la présence de fragments de la première, empâtés dans la seconde, peut provenir de légères différences dans la composition d’une même masse de pierre fondue, et de l’action d’arasion exercée par une masse encore fluide sur une autre masse déjà solidifiée. Je crois que les singulières veines dont il a été question plus haut ont été formées par une substance siliceuse qui s’est postérieurement isolée de la masse. Mais la principale raison qui me porte à croire que ces roches terreuses tendres, avec leurs fragments étrangers, ne sont pas d’origine sédimentaire, c’est qu’il est très peu probable que des cristaux de feldspath, des points noirs microscopiques et de petites taches de couleur foncée puissent se présenter en même proportion dans un sédiment aqueux et dans des masses de trachyte compact. En outre, comme je l’ai fait observer plus haut, le microscope décèle parfois une structure cristalline dans la masse fondamentale d’apparence terreuse. D’un autre côté, il est certainement fort difficile d’expliquer la décomposition partielle de masses de trachyte aussi considérables et formant des montagnes entières.

Veines dans les masses trachytiques terreuses. — Ces veines sont extrêmement nombreuses, elles traversent avec une allure très complexe les variétés blanche et verte de trachyte terreux ; c’est sur les flancs du Crater of the old volcano qu’on les observe le mieux. Elles renferment des cristaux de feldspath vitreux, des points noirs microscopiques et de petites taches foncées, absolument comme la roche qui les environne, mais la base est fort différente, car elle est excessivement dure, compacte, assez cassante, et un peu moins fusible. L’épaisseur des veines varie beaucoup et très brusquement, d’un dixième de pouce à un pouce ; fréquemment elles s’amincissent au point de disparaître tout à fait, non seulement à leur extrémité, mais leur partie centrale s’évide parfois en laissant ainsi des ouvertures rondes, irrégulières ; leur surface est rugueuse. Elles sont orientées dans tous les sens ou sont horizontales, généralement curvilignes, et souvent elles se ramifient entre elles. Par suite de leur dureté, elles résistent à l’altération ; elles s’élèvent de deux ou trois pieds au-dessus du sol, et s’étendent parfois sur une longueur de quelques yards ; quand on frappe ces plaques de pierre, elles produisent un son analogue à celui du tambour, et on les voit distinctement vibrer, leurs fragments répandus sur le sol résonnent comme des morceaux de fer quand on les entre-choque. Elles affectent souvent les formes les plus singulières ; j’ai vu un piédestal de trachyte terreux recouvert par une portion hémisphérique d’une veine, semblable à un grand parapluie, et assez large pour abriter deux personnes. Je n’ai jamais rencontré de veines semblables à celles-ci et n’en ai vu la description nulle part, mais elles ressemblent par leur forme aux veines ferrugineuses produites par ségrégation, et qui ne sont pas rares dans les grés, par exemple dans le nouveau grés rouge d’Angleterre.

Des veines nombreuses de jaspe et d’une matière siliceuse, qu’on rencontre au sommet de la même colline, prouvent qu’une source abondante de silice a existé en cet endroit, et comme ces veines en forme de plaques ne différent du trachyte que parce qu’elles sont plus dures, plus cassantes et moins fusibles, il semble probable que leur origine est due à la ségrégation ou à l’infiltration de matière siliceuse, de la même manière que s’opère le dépôt des oxydes de fer dans plusieurs roches sédimentaires.



Dépôt siliceux et jaspe. — Ce dépôt siliceux est tantôt tout à fait blanc, léger, sa cassure présente un éclat légèrement perle et il passe au quartz rose perle, ou bien il est d’un blanc jaunâtre, à cassure rude, et renferme alors, dans de petites cavités, une poudre terreuse. Les deux variétés se présentent, soit en grandes masses irrégulières dans le trachyte décomposé, soit en couches renfermées dans de grandes veines verticales, tortueuses et irrégulières d’une pierre compacte, rude, rouge sombre, et ressemblant à un grés. Cependant cette roche n’est autre chose qu’un trachyte décomposé ; une variété à peu près semblable, mais qui affecte souvent la forme d’un gâteau de miel adhère fréquemment aux veines plates en saillie qui ont été décrites dans le paragraphe précédent. Ce jaspe a une couleur jaune d’ocre ou rouge ; il se présente en grandes masses irrégulières, et quelquefois en veines, dans le trachyte décomposé et dans la masse de basalte scoriacé qui lui est associée. Les vacuoles de cette dernière roche sont tapissées ou remplies de fines couches concentriques de calcédoine, recouvertes et parsemées d’oxyde de fer rouge vif. Cette roche renferme, spécialement en ses parties les plus compactes, de petits fragments irréguliers et anguleux de jaspe rouge dont les bords se confondent insensiblement avec la masse entourante ; on trouve aussi d’autres fragments, d’une nature intermédiaire entre le jaspe proprement dit et la base basaltique ferrugineuse décomposée. Dans ces fragments ainsi que dans les grandes masses de jaspe en forme de veines, on remarque de petites cavités arrondies ; ces cavités sont exactement de la même dimension et de la même forme que celles du basalte scoriacé remplies ou tapissées de couches de calcédoine. De petits fragments de jaspe, vus au microscope, paraissent ressembler à une calcédoine dont le pigment n’aurait pas été déposé en couches, mais serait reste mélange avec quelques impuretés à la pâte siliceuse. Le passage insensible du jaspe au basalte à moitié décomposé, sa présence en plages anguleuses qui n’occupent évidemment pas des cavités préexistantes de la roche, et l’existence dans ce jaspe de petites vésicules remplies de calcédoine comme celles de la lave scoriacée ne peuvent s’expliquer que dans l’hypothèse qu’un liquide, probablement le même qui a déposé la calcédoine dans les vacuoles, a enlevé aux parties de la roche basaltique ne renfermant pas de cavités les éléments constitutifs de cette roche, a déposé à leur place de la silice et du fer, et a formé ainsi le jaspe. J’ai observé, dans certains échantillons de bois silicifié, que, tout comme dans le basalte, les parties solides étaient transformées en une matière pierreuse homogène de couleur sombre, tandis que les cavités formées par les plus gros vaisseaux conducteurs de la sève (qu’on peut comparer aux vacuoles de la lave basaltique) et d’autres cavités irrégulières, produites apparemment par la décomposition du bois, étaient remplies de couches concentriques de calcédoine ; il n’est pas douteux que, dans ce cas, la substance fondamentale homogène et les couches concentriques de calcédoine aient été déposées par un même liquide.

D’après ces considérations, je ne puis douter que le jaspe de l’île de l’Ascension doive être considéré comme une roche volcanique silicifiée, en donnant à ce mot absolument le même sens qu’on y attache quand on l’applique au bois silicifié : nous ignorons aussi bien la manière dont chaque atome de bois, alors qu’il est encore dans son état normal, puisse être enlevé et remplacé par des atomes de silice, que nous ignorons comment les parties constituantes d’une roche volcanique ont pu subir la même modification 31. J’ai été amené à faire un examen minutieux de ces roches et à en tirer les conclusions que je viens d’exposer, en entendant exprimer par le Rev. Professeur Henslow une opinion analogue au sujet de l’origine d’un grand nombre de calcédoines et d’agates dans des roches trappéennes. Les dépôts siliceux paraissent être très fréquents, sinon tout à fait constants, dans les tufs trachytiques partiellement décomposés 32 ; et comme ces collines, ainsi que nous l’avons exposé plus haut, sont formées de trachyte ayant perdu sa dureté et décomposé in situ, la présence, en ce cas, de silice libre constitue un exemple de plus de ce phénomène.



1   2   3   4   5   6   7   8   9   ...   12


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©atelim.com 2016
rəhbərliyinə müraciət