Ana səhifə

Electronic supplementary material


Yüklə 1.34 Mb.
tarix24.06.2016
ölçüsü1.34 Mb.


Biology Letters

ELECTRONIC SUPPLEMENTARY MATERIAL

A Middle Triassic thoracopterid from China highlights the evolutionary origin of over-water gliding in early ray-finned fishes

Guang-Hui Xu1, Li-Jun Zhao2 and Chen-Chen Shen1



1Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China

2Zhejiang Museum of Natural History, Hangzhou, Zhejiang 310014, China




  1. Methods

Illustrations were drawn manually, and then prepared using Adobe Photoshop and Illustrator software packages (CS4). The relative position of fins and scale count are expressed in a scale formula following Westoll [1]. Characters were mainly adopted or modified from Xu et al. [2]. They were treated as unordered and weighted equally. The data matrix was subjected to the parsimony analysis in PAUP* (version 4.0b10) [3]. Tree searches were conducted using the branch-and-bound algorithm. WinClade 1.00.08 [4] was used to trace the character transformation in the cladogram.

(b) Taxonomic comments on ‘Thoracopterus’ wushaensis

Thoracopterus’ wushaensis [5] is a recently reported thoracopterid on the basis of five specimens from the same fossil beds as those of Potanichthys xingyiensis [2]. The fossil locality of ‘Thoracopterus’ wushaensis is about 5 km away from the type locality of Potanichthys in Xingyi, Guizhou Province, China. Both taxa are ‘four-winged’ thoracopterid gliders because they have wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe noticeably larger than the upper lobe, resembling Thoracopterus and Gigantopterus [6]. Comparison within the Thoracopteridae, ‘Thoracopterus’ wushaensis [5] and Potanichthys [2] are more closely related to Gigantopterus than to Thoracopterus in having an almost naked body. ‘Thoracopterus’ wushaensis should be moved out of the genus Thoracopterus; it is probably a younger synonym of Potanichthys xingyiensis. However, a detailed comparison between these two taxa is still difficult, because the holotype of ‘Thoracopterus’ wushaensis was poorly preserved and incompletely described ([5]; see below); a morphological redescription and a taxonomic revision of this taxon are pending. Thus, ‘Thoracopterus’ wushaensis has not been included in this analysis.



Supplementary Figure S1. Holotype of ‘Thoracopterus’ wushaensis (from [5]).



(c) Strict consensus of six MPTs

Supplementary Figure S2. Strict consensus of six MPTs (TL=142 steps, CI= 0.6127, RI= 0.7901, RC= 0.4841), illustrating phylogenetic positions of Wushaichthys and Peripeltopleurus within the Neopterygii. Character changes indicated with solid circles are unique.


(d) Material examined and references.

BMNH, Natural History Museum, London, UK;

IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China

PIMUZ, Paläontologisches Institut und Museum, Uiversität Zürich, Zürich, Switzerland

ZMNH, Zhejiang Museum of Natural History, Hangzhou, China
Amia calva: Grande and Bemis [7]

Lepisosteus osseus: Grande [8]

Exocoetus and Cypselurus: Breder [9]

Dapedium: Patterson [10,11]; Thies and Herzog [12]

Dorsetichthys (Pholidophorus) bechei: Patterson [11]; Arratia [13]

Leptolepis coryphaenoides: Patterson [11]; Arratia [14]

Perleidus: BMNH P16247, 16248, 19580–19584, 19587–19592, 19595–19599, 19603–19620, 19622, 19623; Lehman [15]; Patterson [11]

Semionotus elegans: Olsen and McCune [16]; Cavin [17]; López-Arbarello [18]

Watsonulus eugnathoides: Olsen [19]; Grande and Bemis [7]

Peltopleurus rugosus: Bürgin [20], PIMUZ T2904

Gigntopterus teller: Griffith [6]

Luganoia lepidosteoides: Bürgin [20]

Peripeltopleurus vexillipinnis: Bürgin [20], PIMUZ A/I 3687, T4332, 193, 473, 495, 718, 737, 1136

Peripeltopleurus hypsisomus: Bürgin [20], PIMUZ T1211, 2150, 2869

Potanichthys xingyiensis: Xu et al. [2]

Thoracopterus niederristi: Griffith [6], Lehman [21], BMNH P1098

Thoracopterus’ martinisi: Tintori and Sassi [22]



Thoracopterus’ magnificus: Tintori and Sassi [22]

Australosomus kochi: Nielsen [23], BMNH P17141–17143, 17156, 17157, 17160, 17161, 20940–20945

(e) Characters and character states used in the phylogenetic analysis.

    1. Skull: no more than one-fourth of total length (0); roughly one-third of total length (1).

    2. Post-temporal fossa: rudimentary (0); well developed (1); lost (2).

    3. Sub-temporal fossa: present (0); absent (1).

    4. Dilatator fossa above hyomandibular facet: absent (0); present (1).

    5. Lateral cranial canal: absent (0); present (1).

    6. Posterior myodome: present (0); absent (1).

    7. Posterior myodome: paired (0); enlarged into a median cavity (1).

    8. Anterior myodome: present (0); absent (1).

    9. Number of anterior myodome: paired (0); a median single (1).

    10. Parasphenoid/basioccipital contact: absent (0); present (1).

    11. Basipterygoid process: present (0); absent (1).

    12. Internal carotid foramen on parasphenoid: absent (0); present (1).

    13. Efferent pseudobranchial foramen on parasphenoid: absent (0); present (1).

    14. Pterotic: present (0); absent (1).

    15. Intercalar: present (0); absent (1).

    16. Extrascapular: present (0); absent (1).

    17. Sphenotic with small dermal component: absent (0); present (1).

    18. Rostral as a discrete element: present (0); absent (1).

    19. Shape of rostral: as a deep cap on snout apex (0); reduced to a narrow tube (1).

    20. Rostral/frontal contact: absent (0), present (1).

    21. Anteriormost lacrimal: as part of orbital ring (0); anterior to orbital ring (1).

    22. Tube-like canal bearing anterior arm of antorbital: absent (0); present (1).

    23. Foramen for olfactory nerves on premaxilla: absent (0); present (1).

    24. Peg-like anterior process of maxilla: absent (0); present (1).

    25. Nasal involvement of anterior border of orbit: present (0); absent (1).

    26. Antorbital involvement of anterior border of orbit: present (0); absent (1).

    27. Posttemporal: contacts extrascapular anteriorly (0); contacts the extrascapular anterolaterally and separates this bone from contact with its counterpart (1).

    28. Parietal as a discrete element: present (0); absent (1).

    29. Nasal process of premaxilla that tightly sutured to frontals: absent (0); present (1).

    30. Premaxillae: paired (0); fused (1).

    31. Number of lacrimal bones: single (0); two or more (1).

    32. Vomers in adults: paired (0); fused (1).

    33. Frontal: elongated (0); laterally expanded (1).

    34. Supraorbital sensory canal: ending at frontal (0); ending at parietal (1).

    35. Infraorbitals posterior to antorbital and below dermosphenotic: two or three elements (0); four or more elements (1).

    36. Supraorbitals (including adnasal): absent (0); present (1).

    37. Number of supraorbitals between adnasal and dermosphenotic: single (0); two or more (1).

    38. Suborbitals: present (0); absent (1).

    39. Number of suborbitals: single element (0); two or more (1).

    40. Dermohyal: present (0); absent (1).

    41. Mobile premaxilla: absent (0); present (1).

    42. Maxilla free from preopercle: absent (0); present (1).

    43. Mobile maxilla in cheek: absent (0); present (1).

    44. Supramaxilla: absent (0); present (1).

    45. Number of supramaxilla: one (0); two (1).

    46. Supra-angular: present (0); absent (1).

    47. Coronoid process: absent (0); present (1).

    48. Suspensorium angle: acute (0); nearly vertical (1).

    49. Symplectic: absent (0); present (1).

    50. Symplectic involment of jaw joint: absent (0); present (1).

    51. Quadratojugal: present (0); absent (1).

    52. Shape of quadratojugal: plate-like (0); splint-like (1).

    53. Uncinate processes on epibranchials: absent (0); present (1).

    54. Number of hypobranchials: three (0); four (1).

    55. Opercle: larger than subopercle (0); roughtly equal to or smaller than subopercle (1).

    56. Shape of preopercle: boomerang-shaped (0); narrow and vertical, bearing a tapering anterior process (1); oval-shaped (2); crescent-shaped (3); L-shaped (4).

    57. Hinge position of jaws: far backwards from posterior margin of orbital (0); near or well anterior to post margin of orbital (1).

    58. Suborbital/maxilla contact: absent (0); present (1).

    59. Interopercle: absent (0); present (1).

    60. Median gular: present (0); absent (1).

    61. Lateral gular: present (0); absent (1).

    62. Presupracleithrum: present (0); absent (1).

    63. Posterior margin of maxilla: straight or slightly convex (0); concave with a posterior maxillary notch (1).

    64. Clavicle: present (0); absent (1).

    65. Clavicle: large, cap anterior end of cleithrum (0); reduced into small plates on postbranchial lamina of cleithrum (1).

    66. Fringing fulcra: absent (0); present (1).

    67. Pectoral fin enlarged as wing: absent (0); present (1).

    68. Diural caudal skeleton: absent (0); present (1).

    69. Division of hypurals into dorsal and ventral groups (a gap between hypurals 2 and 3): absent (0); present (1).

    70. Dorsal and anal fins: rays more numerous than radials (0); rays and radials equal (1).

    71. Pelvic fin enlarged as wing: absent (0); present (1).

    72. Dense lepidotrichial segments of pectoral fin rays between innermost principle pectoral fin ray and body: absent (0); present (1).

    73. Anal fin: larger than or equal to dorsal fin (0); smaller than dorsal fin (1).

    74. Hooklets on anal fin of supposed male: present (0); absent (1).

    75. Dorsal and anal fin rays: segmented throughout length (0); segmented distally (1).

    76. Caudal fin: forked (0); unforked (1).

    77. Caudal fin: lower lobe slightly shorter than or equal to upper lobe (0); lower lobe longer than upper lobe present (1).

    78. Uroneural: absent (0); present (1).

    79. Median caudal neural spines: absent (0); present (1).

    80. Body scales: body fully covered (0); reduced to a few (no more than four) rows of scales in caudal region (1); entirely lost (2).

    81. Scale shape: rhomboid (0); circular to cycloid (1).

    82. Dorsal ridge scales (with posteriorly directed spines): absent (0); present (1).

    83. Horizontal row of scales along lateral line: slightly deeper than those scales above or below lateral line (0); much deeper than those scales above and below lateral line (1); lost (2).

    84. Ossified vertebral centra: absent (0); present (1).

(f) Data matrix of taxa and characters

T’. magnificus and ‘T’. martinisi respectively represent ‘Thoracopterusmagnificus and ‘Thoracopterusmartinisi. The states of three characters (nos. 4, 7, 58) are constant throughout the selected taxa and are not included when performing this phylogenetic analysis.




Taxa

0000000001 1111111112 2222222223 3333333334 4444444445 5555555556 6666666667 7777777778 8888

1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234567890 1234

Australosomus

0001001000 0000000000 00?00?00?? 0?0000-000 0000-0000- 0000000000 0000000000 0000000000 0000

Dapedium

0101101001 111?00?001 000?100010 0001010011 01110?1110 ???0041010 100??10001 00101000?0 0100

Gigantopterus

0??1??1??? ?????0?00? 000010?10? 0?10011??? 00?0-??1?? ????010?0? ??0??01001 111?1010?1 0020

Leptolepis

0101101011 1110000010 0001100010 0101011001 1111101110 1-10041010 1101-00011 0010100110 1001

Luganoia

0??1??1??? ?????0?1-- 00001-0111 0?01011010 0010-?11?? 00??101000 1?0??00??1 001011-??0 0010

Peltopleurus

0??1??1??? ?????0?000 0000000000 0?00011010 0000-?01?? ????00000? ??0??10??1 0011100??0 0010

Perleidus

0001101??0 100000?000 0000000000 0?01011000 0000-001?? ????100000 000??10001 0010100??0 0000

Dorsetichthys

0101101011 1110000010 0001100010 0101111001 1111101110 0110041010 100??10011 0010100110 0000

Semionotus

0101?????1 1001101011 1111110010 1001111001 0111001110 0111031011 1000110001 0010100010 0100

Potanichthys

1????????1 ?00????000 000010?101 0?1001101? 0000-?01?? ????01000? ??0??01001 1111101011 0020

Wushaichthys

0????????? ?????0?000 0000101101 0?1001001? 0000-?01?? 1-??010?00 0000010??1 0011100??0 0010

Peripeltopleurus

0????????? ?????0?000 0000101101 0?1001101? 0000-?01?? 1-??010?00 000??10??1 0011101??0 0010

Thoracopterus

0????????? ?????0?001 000010110? 0?10010??? 0000-?01?? ????010?0? ??0??01??1 111?101??0 0010

T’. magnificus

0????????? ?????0?000 0000101101 0?100??00? 0000-?01?? ????010000 ?00??01001 111?101012 -020

T’. martinisi

0????????? ?????0?000 0000101101 0?100??00? 0000-?01?? ????010000 ?00??01001 111?101012 -020

Watsonulus

0101101000 100?00?011 0111100010 0001111011 0111001111 ??11020010 1010010001 00101000?0 0000

Amia

0111001001 0001001011 0111100010 000110-1-1 0111001111 1-11031-10 1010100001 001011-010 1001

Cypselurus

01010011-1 0110010011 000010-010 011000-1-1 1110-11110 1-10041-11 1101-01111 1010101110 1001

Exocoetus

01010011-1 0110010011 000010-010 011000-1-1 1110-11110 1-10041-11 1101-01111 0010101110 1001

Lepisosteus

021111-1-1 1001101011 1111110010 1000111010 0100-01110 0111041001 1000110001 000011-010 0101


(g) Reference

  1. Westoll TS. 1944 The Haplolepidae, a new family of Late Carboniferous bony fishes: a study in taxonomy and evolution. Bull. Amer. Mus. Nat. Hist. 83, 1–121.

  2. Xu GH, Zhao LJ, Gao KQ, Wu FX. 2012 A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates. Proc. R. Soc. B 20122261.

  3. Swofford DL. 2003 PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.

  4. Nixon KC. 1999 WinClada. Computer program and documentation distributed by the author. www.cladistics.com.

  5. Tintori A, Sun Z-Y, Lombardo C, Jiang D-Y, Ji C, Motani R. 2012 A new ‘flying’ fish from the late Ladinian (Middle Triassic) of Wusha (Guizhou Province, southern China). Gortania 33, 39–50.

  6. Griffith J. 1977 The Upper Triassic fishes from Polzberg bei Lunz, Austria. Zool. J. Linn. Soc. 60, 1–93.Arratia G. 1997 Basal Teleosts and teleostean phylogeny. Palaeo. Ichthyologica. 7, 5–168.

  7. Grande L, Bemis WE. 1998 A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy: an empirical search for interconnected patterns of natural history. Soc. Vert. Paleontol. Mem. (Suppl. J. Vert. Paleontol.) 4, 1–690.

  8. Grande L. 2010 An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The resurrection of Holostei. Copeia 10 (Suppl.), 1–871.

  9. Breder CM. 1930 On the structural specialization of flying fishes from the standpoint of aerodynamics. Copeia 4, 114–121.

  10. Patterson C. 1973 Interrelationships of holosteans. In Interrelationships of Fishes (eds. P. H. Greenwood, R. S. Miles & C. Patterson), pp. 233–305. London, UK: Academic Press.

  11. Patterson C. 1975 The braincase of pholidophorid and leptolepid fishes, with a review of the actinopterygian braincase. Phil. Tran. R. Soc. London, Ser. B 269, 275–579.

  12. Thies D, Herzog A. 1999 New information on Dapedium Leach 1822 (Actinopterygii, Semionotiformes). In Mesozoic Fishes 2– Systematics and Fossil record (eds. G. Arratia & H.-P. Schultze), pp. 143–152. München, Germany: Verlag Dr. Friedrich Pfeil.

  13. Arratia G. 2013 Morphology, taxonomy, and phylogeny of Triassic pholidophorid fishes (Actinopterygii, Teleostei). Soc. Vert. Paleontol. Mem. (Suppl. J. Vert. Paleontol.) 13, 1–138.

  14. Arratia, G. 1997 Basal Teleosts and teleostean phylogeny. Palaeo. Ichthyologica. 7, 5–168.

  15. Lehman JP. 1952 Etude complémentaire des possions de l’Eotrias de Madagascar. Kungl. Svenska Vetenskapsakademiens Hangdlingar, series 4, 2, 1–201.

  16. Olsen PE, McCune AR. 1991 Morphology of the Semionotus elegans species group from the Early Jurassic part of the Newark Supergroup of eastern North America, with comments on the family Semionotidae (Pisces: Neopterygii). J. Vert. Paleontol. 11, 269–292.

  17. Cavin L. 2010 Diversity of Mesozoic semionotiform fishes and the origin of gars (Lepisosteidae). Naturwiss 97, 1035–1040.

  18. López-Arbarello A. 2012 Phylogenetic interrelationships of ginglymodian fishes (Actinopterygii: Neopterygii). PLOS ONE 7, e39370.

  19. Olsen PE. 1984 The skull and pectoral girdle of the parasemionotid fish Watsonulus eugnathoides from the Early Triassic Sakamena Group of Madagascar, with comments on the relationship of the holostean fishes. J. Vert. Paleontol. 4, 481–499.

  20. Bürgin T. 1992 Basal ray-finned fishes (Osteichthyes; Actinopterygii) from the Middle Triassic of Monte San Giorgio (Canton Tessin, Switzerland). Schweiz. Paläont. Abh. 114, 1–164.

  21. Lehman JP. 1979 Note sur les Poissons du Trias de Lunz. I. Thoracopterus Bronn. Ann. des Naturhistor. Mus. Wien 82, 53–66.

  22. Tintori A, Sassi D. 1992 Thoracopterus Bronn. (Osteichthyes: Actinopterygii): a gliding fish from the Upper Triassic of Europe. J. Vert. Paleont. 12, 265–283.

  23. Nielsen E. 1949 Studies on Triassic fishes from East Greenland. II. Australosomus and Birgeria. Medd. øm Grønland 146, 1–309.


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©atelim.com 2016
rəhbərliyinə müraciət