Ana səhifə

Earth Science, 10th edition

Yüklə 27.37 Kb.
ölçüsü27.37 Kb.

Earth Science, 10th edition

Chapter 8: Volcanoes and Other Igneous Activity

I. Volcanic eruptions

A. Factors that determine the violence of an eruption

1. Composition of the magma

2. Temperature of the magma

3. Dissolved gases in the magma

B. Viscosity of magma

1. Viscosity is a measure of a material's resistance to flow

2. Factors affecting viscosity

a. Temperature (hotter magmas are less viscous)

b. Composition (silica content)

1. High silica  high viscosity (e.g., rhyolitic lava)

2. Low silica  more fluid (e.g., basaltic lava)

c. Dissolved gases (volatiles)

1. Mainly water vapor and carbon dioxide

2. Gases expand near the surface

3. Provide the force to extrude lava

4. Violence of an eruption is related to how easily gases escape from magma

a. Easy escape from fluid magma

b. Viscous magma produces a more violent eruption

II. Materials associated with volcanic eruptions

A. Lava flows

1. Basaltic lavas are more fluid

2. Types of lava

a. Pahoehoe lava (resembles braids in ropes)

b. Aa lava (rough, jagged blocks)

B. Gases

1. One to 5 percent of magma by weight

2. Mainly water vapor and carbon dioxide

C. Pyroclastic materials

1. "Fire fragments"

2. Types of pyroclastic material

a. Ash and dust  fine, glassy fragments

b. Pumice  from "frothy" lava

c. Lapilli  "walnut" size

d. Cinders  "pea-sized"

e. Particles larger than lapilli

1. Blocks  hardened lava

2. Bombs  ejected as hot lava
III. Volcanoes

A. General features

1. Conduit, or pipe caries gas-rich magma to the surface

2. Vent, the surface opening (connected to the magma chamber via a pipe)

3. Crater

a. Steep-walled depression at the summit

b. Caldera (a summit depression greater than 1 km diameter)

4. Parasitic cones

5. Fumaroles

B. Types of volcanoes

1. Shield volcano

a. Broad, slightly domed

b. Primarily made of basaltic (fluid) lava

c. Generally large

d. Generally produce a large volume of lava

e. e.g., Mauna Loa in Hawaii

2. Cinder cone

a. Built from ejected lava fragments

b. Steep slope angle

c. Rather small size

d. Frequently occur in groups

3. Composite cone (or stratovolcano)

a. Most are adjacent to the Pacific Ocean (e.g., Mt. Rainier)

b. Large size

c. Interbedded lavas and pyroclastics

d. Most violent type of activity

e. Often produce nuée ardente

1. Fiery pyroclastic flow made of hot gases infused with ash

2. Flows down sides of a volcano at speeds up to 200 km (125 miles) per hour

f. May produce a lahar, a type of mudflow

IV. Other volcanic landforms

A. Calderas

1. Steep walled depression at the summit

2. Formed by collapse

3. Nearly circular

2. Size exceeds one kilometer in diameter

B. Fissure eruptions and lava plateaus

1. Fluid basaltic lava extruded from crustal fractures called fissures

2. e.g., Columbia Plateau

C. Volcanic pipes and necks

1. Pipes are short conduits that connect a magma chamber to the surface

2. Volcanic necks (e.g., Ship Rock, New Mexico) are resistant vents left standing after

erosion has removed the volcanic cone
V. Intrusive igneous activity

A. Most magma is emplaced at depth

B. An underground igneous body is called a pluton

C. Plutons are classified according to

1. Shape

a. Tabular (sheetlike)

b. Massive

2. Orientation with respect to the host (surrounding) rock

a. Discordant  cuts across existing structures

b. Concordant  parallel to features such as sedimentary strata

D. Types of igneous intrusive features

1. Dike, a tabular, discordant pluton

2. Sill, a tabular, concordant pluton

a. e.g., Palisades Sill, NY

b. Resemble buried lava flows

c. May exhibit columnar joints

3. Laccolith

a. Similar to a a sill

b. Lens shaped mass

c. Arches overlying strata upward

4. Batholith

a. Largest intrusive body

b. Often occur in groups

c. Surface exposure 100+ square kilometers (smaller bodies are termed stocks)

d. Frequently form the cores of mountains
VI. Origin of magma

A. Magma originates when essentially solid rock, located in the crust and upper mantle, melts

B. Factors that influence the generation of magma from solid rock

  1. 1. Role of heat

a. Earths natural temperature increases with depth (geothermal gradient) is not

sufficient to melt rock at the lower crust and upper mantle

b. Additional heat is generated by

1. Friction in subduction zones

2. Crustal rocks heated during subduction

3. Rising, hot mantle rocks

2. Role of pressure

a. Increase in confining pressure causes an increase in melting temperature

b. Drop in confining pressure can cause decompression melting

1. Lowers the melting temperature

2. Occurs when rock ascends

3. Role of volatiles

a. Primarily water

b. Cause rock to melt at a lower temperature

c. Play an important role in subducting ocean plates

4. Partial melting

a. Igneous rocks are mixtures of minerals

b. Melting occurs over a range of temperatures

c. Produces a magma with a higher silica content than the original rock
VII. Plate tectonics and igneous activity

A. Global distribution of igneous activity is not random

  1. 1. Most volcanoes are located on the margins of the ocean basins (intermediate,

andesitic composition)

2. Second group is confined to the deep ocean basins (basaltic lavas)

3. Third group includes those found in the interiors of continents

B. Plate motions provide the mechanism by which mantle rocks melt to form magma

1. Convergent plate boundaries

a. Deep-ocean trenches are generated

b. Descending plate partially melts

c. Magma slowly rises upward

d. Rising magma can form

1. Volcanic island arcs in an ocean

a. Basaltic composition

b. e.g. the Aleutians

2. Continental volcanic arcs

a. Andesitic or rhyolitic composition

b. e.g. Andes Mountains

2. Divergent plate boundaries

a. The greatest volume of volcanic rock is produced along the oceanic ridge system

1. Lithosphere pulls apart

2. Less pressure on underlying rocks

3. Partial melting occurs

4. Large quantities of fluid basaltic magma are produced

3. Intraplate igneous activity

a. Activity within a rigid plate

b. Plumes of hot mantle material rise

c. Form localized volcanic regions called hot spots

1. Associated with Hawaii and the

2. Columbia Plateau in the northwestern United States

Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur © 2016
rəhbərliyinə müraciət