Ana səhifə

By Sergey M. Rodionov1, Alexander A. Obolenskiy2


Yüklə 2.21 Mb.
səhifə2/149
tarix24.06.2016
ölçüsü2.21 Mb.
1   2   3   4   5   6   7   8   9   ...   149

Concepts and Problems for Synthesis of

Metallogenic Belts

The following concepts are employed for the synthesis of metallogenic belts.



Mineral Deposit Association. Each mineral resource tract (or metallogenic belt) includes a single mineral deposit type or a group of coeval, closely-located and genetically-related mineral deposits types.

Geodynamic Event for Deposit Formation. Each metallogenic belt contains a group of coeval and genetically related deposits that were formed in a specific geodynamic event. Examples are collision, continental-margin arc, accretion, rifting, and others.

Favorable Geological Environment. Each metallogenic belt is underlain by a geological host rock and (or) structure that is favorable for a particular suite of mineral deposit types.

Tectonic or Geological Boundaries. Each mineral resource tract (or metallogenic belt) is usually bounded by favorable either stratigraphic or magmatic units, or by major faults (sutures) along which substantial translations have occurred.

Relation of Features of Metallogenic Belt to Host Unit. The name, boundaries, and inner composition of each metallogenic belt corresponds to previously define characteristics of rocks or structures hosting the deposits, and to a suite of characteristics for the group of deposits and host rocks.

With these definitions and principles, the area defined for a metallogenic belt is predictive or prognostic for undiscovered deposits. Consequently, the synthesis and compilation of metallogenic belts is a powerful tool for mineral exploration, land-use planning, and environmental studies.

For modern metallogenic analysis, three interrelated problems exist.

(1) What is the relation of geodynamics to regional or global metallogeny? As discussed by Zonenshain and others (1992) and Dobretsov and Kirdyashkin (1994), this problem includes the role of convective processes in mantle and mantle plumes, the global processes of formation of the continents and oceans, the dynamics of development of major tectonic units of the earth's crust, metallogenic evolution of the earth, and the role mantle processes in the origin of major-belts of deposits.

(2) What is relation of regional metallogeny to individual lithosphere blocks? As discussed by Guild (1978), Mitchell and Garson (1981), and Koroteev (1996), this problem includes the genesis of specific metallogenic belts as a function of specific geodynamic environments using the modem concepts of plate tectonics.

And (3) what is the relation of metallogeny to individual tectonostratigraphic terranes and overlap assemblages? As discussed by Nokleberg and others (1993, 1998) and Parfenov and others (1999), this problem includes the genesis of specific metallogenic belts in individual fault-bounded units of distinctive stratigraphy, defined as tectonostratigraphic terranes, and in younger overlapping assemblages often containing igneous rocks formed in continental margin or island arcs, along rift systems in continents, or along transform continental margins.


Methodology of Metallogenic Analysis,

Key Definitions, Geologic Time Scale,

and Time Spans




Methodology of Metallogenic and

Tectonic Analysis

The compilation, synthesis, description, and interpretation of metallogenic belts of Northeast Asia is part of a intricate process to analyze the complex metallogenic and tectonic history of the region. The methodology for this type of analysis of consists of the following steps. (1) The major lode deposits are described and classified according to defined mineral deposit models. (2) Metallogenic belts are delineated. (3) Tectonic environments for the cratons, craton margins, orogenic collages of terranes, overlap assemblages, and contained metallogenic belts are assigned from regional compilation and synthesis of stratigraphic, structural, metamorphic, isotopic, faunal, and provenance data. The tectonic environments include cratonal, passive continental margin, metamorphosed continental margin, continental-margin arc, island arc, transform continental-margin arc, oceanic crust, seamount, ophiolite, accretionary wedge, subduction zone, turbidite basin, and metamorphic. (4) Correlations are made between terranes, fragments of overlap assemblages, and fragments of contained metallogenic belts. (5) Coeval terranes and their contained metallogenic belts are grouped into a single metallogenic and tectonic origin, for instance, a single island arc or subduction zone. (6) Igneous-arc and subduction-zone terranes, which are interpreted as being tectonically linked, and their contained metallogenic belts, are grouped into coeval, curvilinear arc-subduction-zone-complexes. (7) By use of geologic, faunal, and paleomagnetic data, the original positions of terranes and their metallogenic belts are interpreted. (8) The paths of tectonic migration of terranes and contained metallogenic belts are constructed. (9) The timings and nature of accretions of terranes and contained metallogenic belts are determined from geologic, age, and structural data; (10) The nature of collision-related geologic units and their contained metallogenic belts are determined from geologic data. And (11) the nature and timing of post-accretionary overlap assemblages and contained metallogenic belts are determined from geologic and age data.


Key Metallogenic and Tectonic Definitions

For the compilation, the following definitions are adapted from Coney and others (1980), Jones and others (1983), Howell and others (1985), Monger and Berg (1987), Nokleberg and others (1987, 1994a, c, 2001), Wheeler and others (1988), and Scotese and others (2001).



Accretion. Tectonic juxtaposition of two or more terranes, or tectonic juxtaposition of terranes to a craton margin. Accretion of terranes to one another or to a craton margin also defines a major change in the tectonic evolution of terranes and craton margins.

Accretionary wedge and subduction-zone terrane. Fragment of a mildly to intensely deformed complex consisting of varying amounts of turbidite deposits, continental-margin rocks, oceanic crust and overlying units, and oceanic mantle. Divided into units composed predominantly of turbidite deposits or predominantly of oceanic rocks. Units are interpreted to have formed during tectonic juxtaposition in a zone of major thrusting of one lithosphere plate beneath another, generally in zones of thrusting along the margin of a continent or an island arc. May include large fault-bounded units with a coherent stratigraphy. Many subduction-zone terranes contain fragments of oceanic crust and associated rocks that exhibit a complex structural history, occur in a major thrust zone, and possess blueschist-facies metamorphism.

Collage of terranes. Groups of tectonostratigraphic terranes, generally in oceanic areas, for which insufficient data exist to separate units.

Craton. Chiefly regionally metamorphosed and deformed shield assemblages of Archean and Early Proterozoic sedimentary, volcanic, and plutonic rocks, and overlying platform successions of Late Proterozoic, Paleozoic, and local Mesozoic and Cenozoic sedimentary and lesser volcanic rocks.

Craton margin. Chiefly Late Proterozoic through Jurassic sedimentary rocks deposited on a continental shelf or slope. Consists mainly of platform successions. Locally has, or may have had an Archean and Early Proterozoic cratonal basement.

Cratonal terrane. Fragment of a craton.

Continental-margin arc terrane. Fragment of an igneous belt of coeval plutonic and volcanic rocks, and associated sedimentary rocks that formed above a subduction zone dipping beneath a continent. Inferred to possess a sialic basement.

Deposit. A general term for any lode or placer mineral occurrence, mineral deposit, prospect, and (or) mine.

Island-arc terrane. Fragment of an igneous belt of plutonic rocks, coeval volcanic rocks, and associated sedimentary rocks that formed above an oceanic subduction zone. Inferred to possess a simatic basement.

Metallogenic belt. A geologic unit (area) that either contains or is favorable for a group of coeval and genetically-related, significant lode and placer deposit models. With this definition, a metallogenic belt is a predictive for undiscovered deposits.

Metamorphic terrane. Fragment of a highly metamorphosed or deformed assemblage of sedimentary, volcanic, or plutonic rocks that cannot be assigned to a single tectonic environment because the original stratigraphy and structure are obscured. Includes intensely-deformed structural melanges that contain intensely-deformed fragments of two or more terranes.

Metamorphosed continental margin terrane. Fragment of a passive continental margin, in places moderately to highly metamorphosed and deformed, that cannot be linked with certainty to the nearby craton margin. May be derived either from a nearby craton margin or from a distant site.

Mine. A site where valuable minerals have been extracted.

Mineral deposit. A site where concentrations of potentially valuable minerals for which grade and tonnage estimates have been made.

Mineral occurrence. A site of potentially valuable minerals on which no visible exploration has occurred, or for which no grade and tonnage estimates have been made.

Oceanic crust, seamount, and ophiolite terrane. Fragment of part or all of a suite of eugeoclinal deep-marine sedimentary rocks, pillow basalt, gabbro, and ultramafic rocks that are interpreted as oceanic sedimentary and volcanic rocks and the upper mantle. Includes both inferred offshore oceanic and marginal ocean basin rocks, minor volcaniclastic rocks of magmatic arc derivation, and major marine volcanic accumulations formed at a hotspot, fracture zone, or spreading axis.

Overlap assemblage. A postaccretion unit of sedimentary or igneous rocks deposited on, or intruded into, two or more adjacent terranes. The sedimentary and volcanic parts either depositionally overlie, or are interpreted to have originally depositionally overlain, two or more adjacent terranes, or terranes and the craton margin. Overlapping plutonic rocks, which may be coeval and genetically related to overlap volcanic rocks, link or stitch together adjacent terranes, or a terrane and a craton margin.

Passive continental margin terrane. Fragment of a craton margin.

Post-accretion rock unit. Suite of sedimentary, volcanic, or plutonic rocks that formed in the late history of a terrane, after accretion. May occur also on adjacent terranes or on the craton margin either as an overlap assemblage or as a basinal deposit. A relative-time term denoting rocks formed after tectonic juxtaposition of one terrane to an adjacent terrane.

Pre-accretion rock unit. Suite of sedimentary, volcanic, or plutonic rocks that formed in the early history of a terrane, before accretion. Constitutes the stratigraphy and igneous geology inherent to a terrane. A relative-time term denoting rocks formed before tectonic juxtaposition of one terrane to an adjacent terrane.

Prospect. A site of potentially valuable minerals in which excavation has occurred.

Significant mineral deposit. A mine, mineral deposit, prospect, or occurrence that is judged as important for the metallogenesis of a geographic region.

Subterrane. A fault-bounded unit within a terrane that exhibit similar, but not identical geologic history relative to another fault bounded unit in the same terrane.

Superterrane. An aggregate of terranes that is interpreted to share either a similar stratigraphic kindred or affinity, or a common geologic history after accretion (Moore, 1992). An approximate synonym is composite terrane (Plafker and Berg, 1994).

Tectonic linkage. The interpreted association of a suite of coeval tectonic units that formed in the same region and as the result of the same tectonic processes. An example is the linking of a coeval continental-margin arc, forearc deposits, a back-arc rift assemblage, and a subduction-zone complex, all related to the underthrusting of a continental margin by oceanic crust.

Tectonostratigraphic terrane. A fault-bounded geologic entity or fragment that is characterized by a distinctive geologic history that differs markedly from that of adjacent terranes (Jones and others, 1983; Howell and others, 1985).

Transform continental-margin arc. An igneous belt of coeval plutonic and volcanic rocks, and associated sedimentary rocks that formed along a transform fault that occurs along the margin of a craton, passive continental margin, and (or) collage of terranes accreted to a continental margin.

Turbidite basin terrane. Fragment of a basin filled with deep-marine clastic deposits in either an orogenic forearc or backarc setting. May include continental-slope and continental-rise turbidite deposits, and submarine-fan turbidite deposits deposited on oceanic crust. May include minor epiclastic and volcaniclastic deposits.
1   2   3   4   5   6   7   8   9   ...   149


Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©atelim.com 2016
rəhbərliyinə müraciət